
ORIGINAL RESEARCH ARTICLE

International Journal of Tropical Insect Science
https://doi.org/10.1007/s42690-024-01383-6

Morocco in North Africa (Adbelmajid 2008). The insect 
pest made its way to southern Africa, specifically South 
Africa in May 2013 (Conlong and Way 2014). It then 
proceeded to other sugarcane-producing regions, includ-
ing Zimbabwe, Swaziland, Malawi, and Zambia (Way et 
al. 2015; Conlong and Way 2014). It was also reported in 
Kenya in 2016 (Mutonyi and Babikha 2019), and Tanzania 
in 2019 (January et al. 2020). Along with the well-known 
Black Maize Beetle and Sugarcane Stalk Borer (Eldana 
saccharina), YSA is currently regarded as a significant sug-
arcane pest (Zimbabwe Sugar Association Experiment Sta-
tion (ZSAES), unpublished).

YSA has emerged as a polyphagous insect pest, and its 
host range includes plants in the genera Digitaria, Pani-
cum, Paspalum, and Pennisetum; cultivated cereal crops 
such as rice (Oryza sativa), wheat (Triticum aestivum), and 
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Abstract
Secondary metabolites serve a variety of ecological purposes, including defense against biotic and abiotic stressors. The 
aim of this study was to quantify the total phenol and flavonoid contents in sugarcane leaves that mediate resistance to 
yellow sugarcane aphids (YSA) (Sipha flava). A 7 × 2 factorial experiment was conducted in a complete randomized block 
design (CRBD). Seven sugarcane varieties namely 00-1165, 96-1107, ZN 8, ZN 9, ZN 10, ZN 3 L, and N14 under two 
aphid treatments [(uninfested (control) and infested] were used. 00-1165 showed medium resistance, as shown by its aphid 
quantity ratio (AQR), which fell between 0.30 and 0.60. Moreover, ZN 10 is regarded a high sensitive variety because 
its AQR was more than 1.50. Highly significant (p < 0.001) differences were recorded in both uninfested and infested 
treatments on total phenol and flavonoid content. In the YSA infested plots, 96-1107 recorded the highest phenol content 
of 50.31 µg/g, while ZN 3 L had the lowest (25.92 µg/g). Furthermore, N14 recorded the highest flavonoid content of 
6.47 µg/g, whereas ZN 3 L produced the lowest (1.60 µg/g) in YSA infested plots. Notably, there was a significant positive 
correlation between the percentage change in phenol concentration and aphid number (p = 0.002, r = 0.58), and between 
the percentage change in flavonoid concentration and aphid number (p < 0.001, r = 0.70). Moreover, the regression results 
showed a significant positive correlation (p < 0.001, r = 0.70) between the percentage change in flavonoid concentration 
and the number of aphids. Feeding by YSA increased phenol and flavonoid induced resistance. There is a need to incor-
porate sugarcane varieties with high phenol and flavonoid content into the existing YSA management strategies.
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sorghum (Sorghum bicolor); and non-crop members of the 
same genus (Blackman and Eastop 1984; Way et al. 2015). 
The host range of Zimbabwe consists of guinea grass, 
maize, sorghum, and sugarcane (ZSAES). Further investi-
gation is necessary, as there is a chance that the pest’s host 
range will expand as it becomes more entrenched. Cultural, 
biological, and chemical techniques are available as control 
strategies for YSA. In Zimbabwe, synthetic chemicals are 
the primary control method. Currently, Alice (Acetamiprid) 
and Actara (Thiamethoxam) have been approved for use. 
It is essential to create an environmentally benign strategy, 
such as the adoption of host plant resistance (HPRs), given 
the economic significance of YSA and the environmental 
concerns associated with employing chemicals to manage 
aphids. The only management strategy that has been tried 
thus far to control the YSA has not worked independently. 
To control YSA, it is crucial to incorporate the development 
of sugarcane varieties with high levels of secondary metab-
olites (phytochemicals) as a sustainable option to curb the 
rapid increase in YSA populations in the sugar industry.

Phytochemicals are secondary metabolites found in plant 
species and are chemical constituents of plants (Mercy et 
al. 2017). Although these substances do not hinder plant 
growth, they make tissues less appetizing to herbivo-
rous insects (Howe and Jander 2008; Ahman et al. 2019). 
According to Nalam et al. (2021), aphid behavior and 
performance are affected by primary nutrients, as well as 
secondary chemicals. The effects of allelochemicals on the 
function of other organisms can be either beneficial or det-
rimental (Pejman et al. 2011; Thi et al. 2015; Rawat et al. 
2017; Scavo et al. 2019). These substances may be utilized 
instead of traditional insecticides if they are hazardous to 
insects (Akbar et al. 2009). Synthetic insecticides are used 
frequently, such that insects have become resistant to them 
(Mulungu et al. 2007; Khater et al. 2012; Parwada et al. 
2018), hence there is a need for natural substances that have 
been found to be effective against insect pests (Farooq et al. 
2011; Ajayi et al. 2018). According to many researchers, the 
concept of allelopathy by utilizing host plant resistance has 
been successfully used to manage insect pests (Hongo and 
Karel 1986; Saljoqi et al. 2006; Farooq et al. 2011; Zia et al. 
2011; Ajayi et al. 2018).

Phenol is the most prevalent compound in the Poaceae 
family, and several herbivorous insects have been shown to 
be affected when exposed to it (Kessler and Baldwin 2002; 
Sharma et al. 2009; Usha Rani and Jyothsna 2010; War et 
al. 2011b; Ahman et al. 2019). Some studies by Leszczynski 
et al. (1995), and Kessler and Baldin (2002) have demon-
strated that aphid life-table parameters are affected by plants 
with high phenol concentrations. Additionally, phenols 
have been shown to have anti-feedant qualities against the 
cereal aphid (Urbanska et al. 2002). Numerous secondary 

metabolites, such as phenols, sterols, terpenoids, lignins, 
and policosanols (Singh et al. 2015) are found in sugarcane, 
particularly in its juice (Feng et al. 2014; Ali et al. 2019). 
Godshall and Legendre (1988) documented that sugarcane 
and its by-products contain phenols. Several authors includ-
ing Mollyneux et al. (2007); Tinky et al. (2020), and Kerd-
chan et al. (2020) postulated that secondary metabolites 
promote development and activation of defensive mecha-
nisms to safeguard plants. Moreover, it has been observed 
that they also give color, taste, and smell that deter pests. In 
support of this, War et al. (2012) indicated that these metab-
olites are constitutively generated by plants or induced in 
response to an insect attack. This may result in antixenosis 
(non-preference behavior), which discourages insects from 
feeding, ovipositing, and hiding on plants (Kogan and Ort-
man 1978; Smith and Clement 2012; Padmaja 2016; Puri et 
al. 2023). Additionally, plants may exhibit antibiosis, which 
has a deleterious effect on the biology of the insect when it 
feeds on the plant (Painter 1951; Padmaja 2016; Puri et al. 
2023). Singh et al. (2015) reported the presence of phenolic 
compounds such as flavonoids in sugarcane leaves. Further-
more, Colombo et al. (2006) suggested that sugar cane juice 
contain flavonoids and those produced via the phenylpro-
panoid pathway, are among the major secondary metabo-
lites (Falcone Ferreyra et al. 2012; Mierziak et al. 2014; 
Singh et al. 2021) involved in sugarcane defense. A well-
known flavonoid called pisatin found in pea (Morkunas et 
al. 2016) offers protection against the pea aphid (Acyrtho-
siphon pisum). Similarly, resistance against corn leaf aphid 
(Rhopalosiphum maidis) in sorghum was recently shown to 
be conferred by the flavonoid 3-deoxyanthocyanidin (Kari-
yat et al. 2019).

The idea that insect damage could alter the phenolic 
chemicals in sugarcane was first proposed by Akbar et al. 
(2009). The total phenol content significantly increased 
when the root-sucking froghopper attacked sugarcane 
leaves (Silva et al. 2005). Furthermore, feeding by the white 
pit was found to significantly alter the amount and type of 
phenols in 15 sugarcane clones. The phenol and flavonoid 
response of sugarcane varieties to YSA herbivory has not 
been studied to date. Understanding the secondary metabo-
lite response to YSA feeding on sugarcane would provide 
basic insights into the defensive mechanisms and resistance 
responses. According to Paudyal (2019), host plant resis-
tance can assist raise economic thresholds (ETs), thereby 
eliminating the need for insecticide use. This makes it an 
efficient and least disruptive form of integrated pest man-
agement (IPM). The scientific method of examination, 
investigation, extraction, and testing by identifying many 
classes of metabolites present is known as phytochemical 
profiling (Tinky et al. 2020). Flavonoids in sugarcane leaves, 
juice, and bagasse were characterized by using a variety of 
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chromatographic techniques (Colombo et al. 2006, 2008). 
Therefore, the purpose of this study is to characterize the 
secondary metabolites in sugarcane (S. officinarum) leaves 
in response to S. flava feeding through Gas Chromatography 
Mass Spectrometry (GC-MS) profiling.

Materials and methods

The study was conducted in 2023/24 season at the Zimba-
bwe Sugar Association Experiment Station (ZSAES), which 
is owned by Tongaat Hullets, in the southeast Lowveld of 
Masvingo Province, in Chiredzi district. The site is situ-
ated on a 99 km peg along the Ngundu-Tanganda road. It 
is found in agro-ecological region V of Zimbabwe, which 
is characterized by very low and erratic rainfall of less than 
500 mm per annum. It is located 430 m above sea level at 
latitudes of 200 01’ S and longitude 280 38’ E.

Agronomic practices

Seven different sugarcane varieties (ZN 10, N14, ZN 3 L, 
ZN 8, 96-1107, ZN 9, and 00-1165) (Sakadzo et al. 2024) 
were chosen and planted in accordance with the Zimbabwe 
Sugar Production Manual (ZSPM) (Clowes and Breakwell 
1998).

Preparation of plant extract

For this investigation, the total visible dew lap (TVD) 
leaves of seven sugarcane varieties namely ZN 10, N14, ZN 
3 L, ZN 8, 96-1107, ZN 9, and 00-1165 were used. TVD is 
the most active photosynthetic leaf an indicator of sugar-
cane productivity. Three months of sugarcane cultivation, 

as recommended by Rao et al. (2021), was used follow-
ing a natural aphid infestation. The leaves of YSA-infested 
and uninfested sugarcane were defoliated from the plant 
(Fig. 1). Yellowing and purpling of leaves indicates dam-
age symptoms inflicted by YSA in sugarcane. Following the 
procedure of Sanarat et al. (2021) the leaves were cleaned 
under running tap water to remove dust, dried in an oven at 
60 °C for 18 h, crushed into small pieces, and stored at room 
temperature in a sealed bag. The crude leaf extract was later 
extracted by using methanol.

Sample preparation

Following the protocol used by TINNAC laboratories a 1 g 
of sugarcane leaf sample was weighed into a clean 100 ml 
Low Actinic Volumetric flask. Fifty milliliters of gradient-
grade methanol was added and extracted with ultrasonic 
maceration for 1 h. Top up to volume with methanol. The 
mixture was then centrifuged at 1000 rpm for 15 min. The 
supernatant was collected and the residue was discarded. 
Concentration portion of the sample was placed in speed 
vacuum. The sample was reconstituted with gradient-grade 
chloroform in a 5 ml low actinic volumetric flask. The sam-
ple was passed through a solid-phase extraction vacuum 
station and a reverse-phase octadecyl (C18, 6 mL, 500 mg) 
column connected to a 3 kDa Amicron filtering device.

Standard concentration

The standard concentration was prepared by combining 
standard stock (100 ng/ml) diluted in chloroform to 10, 20, 
40 and 50 ng/ml.

Fig. 1 YSA uninfested and infested leaves as exhibited 
by damage symptoms on sugarcane crop. Source (This 
study)
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250 °C, and the transfer line temperature was set to 280 °C. 
The individual peak areas were compared with the total 
peak ion areas to determine the proportion of each compo-
nent. Analytical work done at TINNAC Scientific Labora-
tory is thoroughly documented, providing full details of all 
analyses, including acceptance criteria and actual results, 
analytical methods and run conditions, chromatograms, and 
spectral data (if applicable), and analytical method valida-
tion and verification data are also available upon request 
(Certificate of Analysis (COAs) No: TSL8330ZW). Cus-
tomer COAs and reports can be produced according to cus-
tomer specifications for custom projects. Figure 3 shows a 
summary of the sample analysis flowchart.

Summaried analysis flow chart of secondary metabolites 
profiling

Fig. 3 Analysis flow chart of phenols and flavonoids

Phytochemical screening

The phytochemicals screened in this study included flavo-
noids, tannins, phenols, terpenoids, saponins, coumarins, 
and anthraquinones.

Sample analysis using Gas Chromatography-
Mass Spectrometry (GC-MS) Shimadzu Nexis 
GC2030, GCMS TQ8040NX triple quadrupole mass 
spectrometer, HS-20NX mode

Gas chromatography mass spectrometry with electron 
ionization (Shimadzu Nexis GC2030, GCMS TQ8040NX 
triple quadrupole mass spectrometer, HS-20NX (Fig. 2) 
mode was used to examine the phenolic and flavonoid com-
position of both infested and un-infested sugarcane leaves. 
Seven sugarcane varieties under two aphid infestations were 
subjected to analysis by using GC-MS (Shimadzu Nexis 
GC2030, GCMS TQ8040NX Triple Quadrupole Mass Spec-
trometer, HS-20NX mode) replicated four times resulting 
in 56 samples. Following the extraction and filtration pro-
cess, a split-mode injection port received 1 µl of the sample 
injected at a ratio of 1:10. Helium Carrier Gas Control at 
32.0 cm/sec FR; 1.0 ml/min was used.The column of 30 m 
long, 0.25 mm internal diameter, and 0.25 μm thick fused 
in silica capillary column of BR-5MS (5% Diphenyl/95% 
Dimethyl poly siloxane) was used. The temperature of the 
oven was raised from 40 °C for two minutes to 160 °C at 
a rate of 20 °C/min without holding, then increased once 
more to 280 °C at a rate of 5 °C/min without holding, and 
finally to 300 °C at a rate of 12 °C/min with an 8-minute 
hold (Rajendran et al. 2017).

A 275 oC injector temperature of 275 °C and a GC oper-
ating duration of 41 min were observed. The purpose of this 
final increase was to thoroughly elute the components of the 
sample from the column and to remove any remaining resi-
due. With an ionization energy of 70 eV, the mass spectrom-
eter was operated in positive electron ionization (EI) mode 
and a 0–3.0 min solvent delay was observed. Fragments 
from m/z 50 to 500 kDa were programmed with a scan inter-
val of 0.5 s. The temperature of the filament source used was 

Fig. 2 Shimadzu Nexis GC2030, GCMS TQ8040NX Triple Quadru-
pole Mass Spectrometer, HS-20NX mode. Source (This study)
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emphasized that a red-brown color indicates the presence of 
terpenoids.

Testing for phenols

A combination of 2 ml distilled water and a few drops of 
10% ferric chloride were added to 1 ml of the extract. The 
presence of blue or green indicates the presence of phenols 
(Gowri and Vasantha 2010).

Testing for anthraquinones

A few drops of 10% ammonia solution were added to 1 ml 
of the plant extract. Formation of a pink color indicated the 
presence of anthraquinones (Geetha and Geetha 2014).

Data collection

Aphid number

Aphids were physically counted on all leaves (Fig. 4) of five 
marked tillers to correlate aphid numbers with phenol and 
flavonoid contents.

Aphid quantity ratio (AQR)

The Chinese Agricultural Standard was used to determine 
the AQR (Chen et al. 2007; Xu et al. 2021). At the sam-
pling stages, the number of aphids on the five plants in each 
treatment was counted. The following formula was used to 
determine AQR:

AQR =
Average number of aphids on a variety

Average number of aphids on all varieties

Based on AQR, the following scale was used to evaluate 
aphid resistance (Xu et al. 2021) (Table 1).

Qualitative data on secondary metabolites

Qualitative data were obtained for phenols (P), flavonoids 
(F), terpenoids (T), saponins (S), coumarins (C), tannins 
(T), and anthraquinones (A).

Quantitative data on phenols and flavonoids

Total phenolic content (TPC) and total flavonoid content 
(TFC) were determined from 56 samples by GC-MS by 
adding the quantified phenols and flavonoids (Table 2). 
Furthermore, the relationship between aphid number and 

Test for flavonoids

The sodium hydroxide (NaOH) test was used to test for fla-
vonoids. In this test, 1 ml of the stock solution was placed 
in a test tube, and a few drops of 1 M NaOH solution were 
added. The presence of flavonoids was indicated by the 
formation of an intense yellow color that disappeared after 
adding a few drops of 1 M hydrochloric acid (Hossain et al. 
2013).

Testing for tannins

A ferric chloride test was performed to test for tannins. A 
few drops of 5% ferric chloride were added to a test tube 
containing 1 ml of the stock solution. Wait et al. (2011) 
inferred the presence of tannins when a greenish, blue-
black, or blue-green color is obtained.

Testing for saponins

This was performed by adding 2 ml of distilled water to 
2 ml of the extract solution in a test tube. The mixture was 
shaken in a test tube for 10s. Foam development indicates 
the presence of saponins (Kumar Bargah 2015).

Testing for coumarins

One milliliter of 10% NaOH (sodium hydroxide) was added 
to 1 ml of the extract in a test tube. Yellow color indicates 
the presence of coumarins (Vimalkumar et al. 2014).

Testing for terpenoids

This was performed by mixing 2 ml of chloroform and a 
few drops of concentrated sulfuric acid, which was later 
added to 0.5 ml of the extract in a tests tube. Raphael (2012) 

Fig. 4 Aphid counting. Source (This study)
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Evaluation of yellow sugarcane aphid resistance

There was a significant interaction (p < 0.001) between 
variety and aphid infestation on AQR. The AQR of variety 
00-1165 was in the range of 0.30–0.60 indicating that it was 
a medium resistant variety to YSA stress, while ZN 8 and 
ZN 9 had low resistance. Furthermore, ZN 3 L and 96-1107 
varieties showed low sensitivity. Moreover, N14 was mod-
erately sensitive. Lastly, ZN 10 represents a highly sensitive 
variety because its AQR was more than 1.50 (Table 4).

Effects of sugarcane variety on total phenol content 
(TPC)

A highly significant interaction (p < 0.001) between sug-
arcane variety and aphid treatment on total phenol content 
was recorded. Highly significant differences (p < 0.001) in 
TPC among the sugarcane varieties were observed. The 
results showed that N14 had the highest phenol content of 
35.79 µg/g while ZN 8 had the lowest phenol content of 
20.71 µg/g in the YSA uninfested (control) treatment. In 
the YSA infested plots, 96-1107 sugarcane variety had the 
highest phenol content of 50.31 µg/g, while ZN 3 L had the 
lowest phenol content of 25.92 µg/g (Fig. 6).

Effects of sugarcane variety on total flavonoid 
content (TFC)

There was highly significant interaction (p < 0.001) between 
sugarcane variety and aphid treatment on TFC. Furthermore, 
highly significant (p < 0.001) differences in total flavonoid 
content were recorded among the sugarcane varieties in 
both uninfested and infested. 00-1165 sugarcane variety 
recorded the highest flavonoid content of 2.99 µg/g whereas 
ZN 9 had the lowest flavonoid content of 1.5 µg/g in the 
YSA uninfested (control) treatment. In the YSA infested 
plots, the N14 sugarcane variety had the highest total flavo-
noid content of 6.47 µg/g, whereas ZN 3 L had the lowest 
flavonoid content of 1.60 µg/g (Fig. 7).

Relationship between percentage change in phenol 
content and yellow sugarcane aphid number

The regression analysis showed a highly significant 
(p = 0.002) positive correlation between percent change in 
phenol content and YSA number (Fig. 8, Y = 0.15X-23.6, 
p = 0.002, r = 0.58). An increase in YSA number or feeding 
stimulates the plant to produce more phenols as a defense 
strategy thereby causing a positive correlation between the 
two variables.

accumulation of total phenol content and flavonoid content 
in the seven sugarcane varieties was also determined.

Data analysis

Genstat version 18th edition was used to analyze data on 
aphid number, total phenol content (TPC), and total fla-
vonoid content (TFC). Two way and one way analysis of 
variance was used to test the effects of variety and aphid 
treatment and their interaction (variety × aphid treatment). 
Separation of means was done by using Fishers Protected 
Least Significance Difference (LSD) at 5% Significance 
Level were significant differences (p < 0.05) were noted. 
Regression analysis was used to determine the correlation 
between the percentage change in total phenol and flavo-
noid contents and aphid number.

Results

The profiling of secondary metabolites revealed that the 
leaves of both infested and uninfested sugarcane leaves 
contained the following: phenols (P), flavonoids (F), ter-
penoids (T), saponins (S), coumarins (C), tannins (T), and 
anthraquinones (A) (Table 3). The identified and quantified 
phenols and flavonoids are listed in Table 2.

Yellow sugarcane aphid number

There was a highly significant interaction (p < 0.001) 
between sugarcane variety and aphid treatment (infested 
and uninfested) on aphid number. Aphid number showed 
highly significant differences (p < 0.001) among the sug-
arcane varieties in both the YSA uninfested (control) and 
infested treatments. The ZN 10 sugarcane variety recorded 
the highest YSA number (220) while the 00-1165 recorded 
the lowest (75). In aphid infested plots, ZN 10 recorded the 
highest YSA number (888) while 00-1165 recorded the low-
est (309) (Fig. 5).

Table 1 Aphid resistance scale based on AQR
Level Description AQR
1 High resistance 0.01 < AQR ≤ 0.30
2 Medium resistance 0.30 < AQR ≤ 0.60
3 Low resistance 0.60 < AQR ≤ 0.90
4 Low sensitivity 0.90 < AQR ≤ 1.20
5 Medium sensitivity 1.20 < AQR ≤ 1.50
6 High sensitivity AQR > 1.50
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Table 2 Identified common phenols and flavonoids in sugarcane leaves amongst the seven sugarcane varieties in YSA uninfested and infested plots
Identified Compound Name Match 

Score
Name

(1 S,3R,4R,5R)-3-[(E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy-1,4,5-trihydroxycyclohexane-
1-carboxylic acid

99.1 Chlorogenic Acid

(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoic acid 99.36 Caffeic Acid
(2R,3 S,4 S,5 S)-2-[(E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy-3,4,5-trihydroxyhexanedioic acid 99.22 2-O-caffeoylglucarate
1-(4-Hydroxy-3,5-dimethoxyphenyl)ethanone 99.8 Acetosyringone
Feruloyl quinic acid: 1,3,5-trihydroxy-4-[(E)-3-(4-hydroxy-3- 99.4 Feruloylquinic acid isomer 1
methoxyphenyl)prop-2-enoyl]oxycyclohexane-1-carboxylic acid 99.18 Feruloylquinic acid isomer 2
Unknown 98.27 Feruloylquinic acid isomer 3
Unknown 98.24 Feruloylquinic acid isomer 4
3,5-Dimethoxy-4-[(2 S,3R,4 S,5 S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxybenzoic 
acid

99.24 Glucosyringic acid

2-(4-Hydroxy-3-methoxyphenyl)acetic acid 98.21 Homovanillic acid
(1R,3 S,4 S,5 S)-1,3,4-trihydroxy-5-[(E)-3-(4- 98.36 1 p-Coumaroylquinic acid:
2 hydroxyphenyl)prop-2-enoyl]oxycyclohexane-1-carboxylic acid 99.15 p-Coumaroylquinic acid
3,4-Dihydroxybenzoic acid 97.92 Protocatechuic acid
4-Hydroxy-3-methoxybenzoic acid 98.96 Vanillic acid
4-Hydroxy-3,5-dimethoxybenzoic acid 99.54 Syringic acid
(E)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enal 99.84 Sinapaldehyde
(2E)-3-(2-hydroxyphenyl)prop-2-enoic acid 97.77 o-Coumaric acid
(2E)-3-(3-hydroxyphenyl)prop-2-enoic acid 99.14 m-Coumaric acid
(2R,3 S)-2-(3,4-Dihydroxyphenyl)-3,4-dihydro-2 H-chromene-3,5,7-triol 98.84 Catechin
5,7-Dihydroxy-2-(3-hydroxy-4-methoxyphenyl)chromen-4-one 99.3 Diosmetin
5,7-Dihydroxy-2-(4-hydroxyphenyl)chromen-4-one 99.09 Apigenin
3-[[6-[2-(3,4-Dihydroxyphenyl)-5,7-dihydroxychromenylium-3-yl]oxy-3,4,5-trihydroxyoxan-2- 98.02 Cyanidin-3-malonyl-glucoside
2-(3,4-Dihydroxyphenyl)-5,7-dihydroxychromen-4-one 98.54 Luteolin
5,7-Dihydroxy-3-(4-hydroxyphenyl)chromen-4-one 99.63 Genistein
[(2R,3 S,4 S,5R,6 S)-6-[2-(3-Ethenyl-5-methoxy-4-methylphenyl)-5,7-dihydroxychromenylium-3-yl]
oxy-3,4,5-trihydroxyoxan

99.25 Malvidin-3-caffeoyl-glucoside

5,7-Dihydroxy-2-(4-hydroxyphenyl)-6-[(2 S,3R,4R,5 S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)
oxan-2-yl]chromen-4-one

99.74 Isovitexin 
(apigenin-6-C-glucoside)

2-(3,4-Dihydroxyphenyl)-5-hydroxy-7-[(2 S,3R,4 S,5 S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)
oxan-2-yl]oxychromen-4-one

99.28 Luteolin-7-O-glucoside

3-[[6-[2-(3,4-Dihydroxyphenyl)-5,7-dihydroxychromenylium-3-yl]oxy-3,4,5-trihydroxyoxan-2- 99.08 Cyanidin-3-malonyl-glucoside
yl]methoxy]-3-oxopropanoic acid
5-Hydroxy-2-(3-hydroxy-4-methoxyphenyl)-7-[(2 S,3R,4 S,5 S,6R)-3,4,5-trihydroxy-6- 99.73 Diosmin (diosmetin-7-Or-

hamonglucoside)
[[(2R,3R,4R,5R,6 S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxymethyl]oxan-2-yl]oxychromen-4-one
[(2R,3 S,4 S,5R,6 S)-6-[2-(3-Ethenyl-5-methoxy-4-methylphenyl)-5,7-dihydroxychromenylium-3-yl]
oxy-

98.48 Malvidin-3-caffeoyl-glucoside

3,4,5-trihydroxyoxan-2-yl]methyl (E)-3-(3,4-dihydroxyphenyl)prop-2-enoate
2-(3,4-Dihydroxyphenyl)-5,7-dihydroxy-6-[4-hydroxy-6-methyl-5-oxo-3-(3,4,5-trihydroxy-6- 99.03 Maysin 

(luteolin-6-C-diglycoside)
methyloxan-2-yl)oxyoxan-2-yl]chromen-4-one
(2 S,4 S,5 S)-2-[7-Hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3-[(2 S,5 S)-3,4,5-trihydroxy-6- 99.5 Peonidin-3,5-diglucoside
(hydroxymethyl)oxan-2-yl]oxychromenylium-5-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol
6-[(2 S,3R,4 S,5 S,6R)-4,5-Dihydroxy-6-(hydroxymethyl)-3-[(3R,4R,5R,6 S)-3,4,5-trihydroxy-6- 96.15 Isoorientin 2″-C-rhamnoside
methyloxan-2-yl]oxyoxan-2-yl]-2-(3,4-dihydroxyphenyl)-5,7-dihydroxychromen-4-one
5-Hydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-7-[(3R,4 S,5 S,6R)-3,4,5-trihydroxy-6- 95.11 Tricin-7-O-glucoside
(hydroxymethyl)oxan-2-yl]oxychromen-4-one
3-O-(6’’-succinyl)-rhamnoside 97.54 Petunidin
Vitexin (apigenin-8-C-glucoside) 5,7-Dihydroxy-2-(4-hydroxyphenyl)-8-[(2 S,3R,4R,5 S,6R)-3,4,5-
trihydroxy-6-(hydroxymethyl)oxan-2-

99.95 Vitexin 
(apigenin-8-C-glucoside)

yl]chromen-4-one
Source This study

1 3



International Journal of Tropical Insect Science

Discussion

The YSA number of the sugarcane varieties was influ-
enced by secondary metabolites which in turn affected the 
AQR resistant evaluation. According to the AQR resistance 
evaluations, 00-1165 sugarcane variety is a medium resis-
tant cultivar to YSA stress, while ZN 8 and ZN 9 are low 
resistant. Furthermore, ZN 3 L and 96-1107 showed low 
sensitivity. In addition, N14 is moderately sensitive, while 
ZN 10 variety is regarded as highly sensitive. This trend 
of aphid number and AQR might have been influenced by 
the differences in genetic map in relation to induced defense 
mediated by YSA. However, similar trend of results were 
reported by Xu et al. (2021) in wheat under cereal aphid 
stress on AQR resistant evaluations. Profiling of secondary 
metabolites in sugarcane showed that sugarcane contains a 
myriad of secondary metabolites (Tables 3 and 2) which act 
as anti-feedents and anti-repellents. Presence of secondary 
metabolites in sugarcane have been reported by a number of 
authors (Colombo et al. 2005, 2006, 2008; Duarte-Almeida 
et al. 2007; Feng et al. 2014; Singh et al. 2014; Pinheiro et 
al. 2017; Rajendran et al. 2017; Koch et al. 2018; Ali et al. 

Relationship between percent change in flavonoid 
content and aphid number

Regression analysis showed a highly significant (p < 0.001) 
positive correlation between percent change in flavonoid 
content and YSA aphid number (Fig. 9, Y = 1.17X -50.2, 
p < 0.001, r = 0.70). An increase in the number resulted in 
an increase in flavonoid content and served as a defense 
mechanism against YSA aphid infestation leading to a posi-
tive correlation between these two variables.

Table 3 Secondary metabolites screening of seven sugarcane varieties
Phytochemical screening
Sugarcane variety Phenols Flavonoids Terpenoids Saponins Coumarins Tannins Antraquinones
ZN 10 + + + + + + +
ZN 9 + + + + + + +
ZN 8 + + + + + + +
ZN 3 L + + + + + + +
00-1165 + + + + + + +
96-1107 + + + + + + +
N14 + + + + + + +
+ indicates the presence of the tested: Phenols (P), Flavonoids (F), Terpenoids (T), Saponins (S), Coumarins (C), Tannins (T), Anthraquinones 
(A)

Table 4 The AQR and yellow sugarcane aphid resistance levels of dif-
ferent sugarcane varieties
Varieties AQR Aphid resistance
00-1165 0.55 Medium resistance
ZN 8 0.76 Low resistance
ZN 9 0.79 Low resistance
ZN 3 L 0.98 Low sensitivity
96-1107 1.02 Low sensitivity
N14 1.32 Medium sensitivity
ZN 10 1.58 High sensitivity

Fig. 5 Yellow sugarcane aphid 
number in uninfested (control) 
and infested plots of different 
sugarcane varieties
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biosynthetic pathway was not explored. Susceptible sugar-
cane varieties, such as 96-1107, N14, and ZN 10 were able 
to increase total phenolics and flavonoids in YSA-infested 
plots when compared to their control plots. In another study, 
a decrease in the body size of aphids was reported in wheat 
cultivars with high hydroxamic acid content (Fuentes-Con-
treras and Niemeyer 1998). In addition, plants generate sev-
eral secondary metabolites known as phytoanticipins and or 
phytoalexins (War et al. 2012). These secondary compounds 
hinder insects’ ability to feed continuously on plants (Nalam 
et al. 2019). In support of this, Malekshah et al. (2022) doc-
umented the impact of the physicochemical characteristics 
of sugarcane varieties on population dynamics of stem borer 
(Sesamia nonagrioides).

2019; Salgado 2020; Kerdchan et al. 2020; Ni et al. 2021; 
Srihanam et al. 2021; Rao et al. 2022; Shafiqa-atikah et al. 
2022. The study was restricted to sugarcane crop of ≤ 3 
months which might have influenced the secondary metabo-
lites in sugarcane. This is confirmed by Feng et al. (2014); 
Kraphankhieo and Srihanam (2016); Naowaset and Sriha-
nam (2017) who suggested that type and location of sug-
arcane planting affects the secondary metabolite content of 
the crop. Identification and quantification of flavonoids and 
phenols was done. It has been observed that accumulation 
of phenols and flavonoids is part of the defense response 
of sugarcane to YSA feeding, with the aim of repelling or 
toxifying aphids. From this study, YSA feeding might have 
induced the expression of phenol and flavonoid biosyn-
thetic genes, leading to increased production, although the 

Fig. 7 Flavonoid content of 
different sugarcane varieties in 
yellow sugarcane uninfested and 
infested plots

 

Fig. 6 Phenol content of different 
sugarcane varieties in yellow 
sugarcane aphid uninfested and 
infested plots
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Chen et al. (2003), Sakihama and Yamasaki (2002), Ramos 
et al. (2017), and Xu et al. (2021) were in agreement with 
these findings.

From this study increased phenol is evidence that they 
are involved in host plant defense. Findings by Akbar 
(2009) reported increased phenolic content in response to 
aphid feeding in sugarcane. These results concur with the 
findings of Silva et al. (2005), who reported an increased 
phenol in response to root-sucking froghopper (Mahanarva 
fimbriolata Stal.). In support of this, insect herbivore have 
been reported to frequently cause changes in phenol and fla-
vonoid levels in plants (Treutter 2007; Zhang et al. 2017; 
Wang et al. 2019). Higher phenol concentrations in plants 
have been shown to deter pests (Zhang et al. 2022). In addi-
tion, it was discovered that phenol content increased in 15 
sugarcane clones that attacked by the white pit (Antitrogus 
parvulus) (Silva et al. 2005). Of the seven sugarcane acces-
sions, 96-1107 and N14 displayed high total phenolic and 
flavonoid content, respectively. Furthermore, the suscep-
tible varieties (96-1107, N14, and ZN 10) exhibited yel-
lowish and purplish leaf color. These findings corroborate 

In the present study, different sugarcane varieties exhib-
ited varying levels of phenolic and flavonoid accumulation 
in response to YSA infestation. This significant increase 
between varieties is confirmed by Zhu et al. (2011). The 
N14 sugarcane variety seemed to be able to accumulate 
sufficient phenol and flavonoid content in response to YSA 
attack. Zhang et al. (2022) reported statistically strong asso-
ciations between percent change in flavonoid content and 
aphid number, although a strong positive correlation were 
reported on both phenols and flavonoids. Moreover, Havi-
ola et al. (2007) found positive correlations similar to this 
study. Additionally, Zhang et al. (2022) conjectured that 
correlations between total phenolic compounds and insect 
performance ranged from negative to zero. Similar results 
were reported by Green et al. (2003) on pigeonpea (Caja-
nus cajan) varieties’ susceptibility to podworms (Helicov-
erpa armigera). Related results were reported by Chen et 
al. (2003), who indicated that wheat resistance to aphids 
improved when the total phenol content increased. The total 
phenol levels in the seven sugarcane cultivars were substan-
tially higher than those in the control plants. Additionally, 

Fig. 8 Relationship between 
percentage change in phenol 
content and yellow sugarcane 
aphid number
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subsequently trigger the creation of secondary metabolites 
via the plant defense mechanism pathway, thereby increas-
ing the resistance of infested sugarcane types to aphids. 
However, the ROS and the shikimate route were not inves-
tigated by this study.

The increased phenolic and flavonoid contents in sugar-
cane leaves may correlate with enhanced antioxidant activ-
ity, helping to counteract the oxidative stress caused by YSA 
infestation. Elevated accumulation of ROS can also result 
in a defense response in the host plant, mediated by SARS-
induced systemic acquired immunity (Wu et al. 1997; Cao 
et al. 1998; Zhang et al. 1999; Asada et al. 2006). Plants that 
experience ROS suppression are more vulnerable to aphid 
attacks, whereas ROS accumulation may result in aphid 
resistance. This concurs with the findings by Shoala et al. 
(2018). Such trend of results might be a similar case hap-
pening in YSA-resistant (00-1165) and moderately resistant 
(ZN 8, ZN 9, and ZN 3 L) sugarcane varieties. According 
to Shankar and Yinghua (2021), saliva is known to contain 
a variety of toxic chemicals that cause plants to perceive 
invasion by aphids. This may worsen the build-up of ROS, 
a precursor to oxidative stress. This condition ultimately 

those of Haile et al. (1999) and Goławska et al. (2010), who 
observed that lower levels of chlorophyll in susceptible vari-
eties may be linked to higher synthesis of defensive second-
ary metabolites. During feeding, aphids secrete phytotoxins 
that disrupt physiology and activate defense mechanisms 
(Botha et al. 2006; Smith et al. 2010). The leaf chloroplasts 
of aphid-infested plants can be broken down by enzymes in 
aphid saliva, resulting in longitudinal streaks that are white, 
yellow, purple, or reddish-purple on the leaves (Fouché et 
al. 1984; Pike and Allison 1991; Ma et al. 1998; Liu et al. 
2020), although enzymes were not measured in this study.

The ability of sugarcane varieties to withstand the dam-
aging effects of reactive oxygen species (ROS) caused by 
aphid infestation depends on their antioxidant capacity. 
Moreover, plants have evolved antioxidant systems to coun-
teract the harmful effects of ROS. This mechanism elimi-
nates excess ROS from the cell and shields the plant from 
oxidative damage (Shankar and Yinghua 2021). Smith and 
clement (2012) discovered that shikimate kinase was ele-
vated in wheat infested by Russian wheat aphid. Therefore, 
the study findings suggest that the YSA infestation in our 
study could have triggered the shikimate route, which could 

Fig. 9 Relationship between 
percent change in flavonoid con-
tent and yellow sugarcane aphid 
number

 

1 3



International Journal of Tropical Insect Science

Conclusion

Secondary metabolites in sugarcane mediate resistance to 
YSA feeding. AQR evaluate level of resistance of sugarcane 
varieties in response to YSA incursion. The tested sugarcane 
varieties showed increased phenolic and flavonoid content 
in response to YSA infestation.
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