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Abstract  

     Prostate cancer (PCa) is one of the most common malignancies, and many studies have shown 

that PCa has a poor prognosis, which varies across different ethnicities. This variability is caused 

by genetic diversity. High-throughput omics technologies have identified and shed some light on 

the mechanisms of its progression and finding new biomarkers. Still, a systems biology approach 

is needed for a holistic molecular perspective. In this study, we applied a multi-omics approach 

to data analysis using different publicly available omics data sets from diverse populations to 

better understand the PCa disease etiology. Our study used multiple omic datasets, which 

included genomic, transcriptomic and metabolomic datasets, to identify drivers for PCa better. 

Individual omics datasets were analysed separately based on the standard pipeline for each 

dataset. Furthermore, we applied a novel multi-omics pathways algorithm to integrate all the 

individual omics datasets. This algorithm applies the p-values of enriched pathways from unique 

omics data types, which are then combined using the MiniMax statistic of the 

PathwayMultiomics tool to prioritise pathways dysregulated in the omics datasets. The single 

omics result indicated an association between up-regulated genes in RNA-Seq data and the 

metabolomics data. Glucose and pyruvate are the primary metabolites, and the associated 
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pathways are glycolysis, gluconeogenesis, pyruvate kinase deficiency, and the Warburg effect 

pathway. From the interim result, the identified genes in RNA-Seq single omics analysis are linked 

with the significant pathways from the metabolomics analysis. The multi-omics pathway analysis 

will eventually enable the identification of biomarkers shared amongst these different omics 

datasets to ease prostate cancer prognosis. 
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Introduction 

Prostate cancer (PCa) is the most prevalent hormone-dependent oncological disease and the 

second leading cause of tumour-related deaths among males worldwide (1); (2). Clinically, PCa is 

characterized by indolent phenotypes, rapid progression and aggressive metastatic disease. 

Compared to other tumours, PCa progression is slow yet still harms the patient’s long-term 

health (3). The multifocal and heterogeneity nature of primary PCa is associated with poor 

prognosis (4), and current clinicopathological indicators do not distinguish well between patients 

based on their outcomes at the initial stage of the disease (5), as such intervention for patients 

with metastasis is still urgently needed. Therefore, the efficient identification of the risk level of 

prostate cancer patients and precise therapeutic targets has always been a critical equation to 

solve. 

Despite its highest genetic diversity, the African population is reported to have a higher 

prevalence and associated mortality rate of PCa (6) globally. Comparative studies conducted 

mainly in Africa are crucial to investigate the genetic basis of prostate cancer and its phenotypic 

adaptation in Africa. Some studies have successfully fine-mapped significant PCa-associated 

genetic variants using African ancestry datasets. However, the findings     could only explain 30–

33% of prostate cancer variability among African individuals (7). A distinct genomic landscape of 

PCa and genetic polymorphisms associated with specific ethnic groups may lead to different 

metabolic adaptations that permit tumour cells to increase (6). The lack of adequate genetic 

reference information from the African genome is one of the significant obstacles in exploring 
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the benefits of precision oncology in the African context. The high ethnic diversity and prevalence 

of aggressive PCa in the African population represent biomedical research opportunities. The 

poor understanding of PC pathogenesis has limited the effective clinical management of patients 

with the PC condition (8). High-throughput omics technologies have revolutionized biomedical 

research where simultaneous multi-omics data integration helps to unlock hidden biological 

relationships useful for early diagnosis, prognosis and expedited treatments (9). The recent past 

has seen rapid development and use of high-throughput technologies, such as genomics, 

transcriptomics, epigenomics, proteomics and metabolomics, in an attempt to understand PCa 

(10). In as much as the single omics technologies have identified and shed light on the 

mechanisms of the tumour progression, subtype and finding new treatment targets, the 

multisystem and multilevel pathological nature of the disease calls for a holistic molecular 

perspective of the mechanisms, prospective biomarkers and drug targets and responses. This 

multi-layered analysis can only be uncovered when a systems biology approach is adopted. 

Compared to single omics interrogations, multi-omics data integration provides researchers with 

a greater understanding of the flow of information, from the original cause of the disease 

(genetic, environmental, or developmental) to the functional consequences or its relevant 

interactions (11). A practical consideration in multi-omic studies is the correlation of identities of 

the same objects across omics layers. However, it is possible to infer genetic signatures or 

phenotypes based on genotypes from different objects (12). The chances of finding a correlation 

or association between two omics elements that share a common driver or when one factor 

perturbs the other is very high. Mediation analysis helps to integrate such omics data, treating 

one as the mediator in the causal mechanism from genotype (SNPs) to phenotype (disease) (13). 

A study done by Sinha et al. using multi-omics in PCa revealed that proteomics features were 

significantly more informative for biochemical recurrence prediction than genomic, epigenomics 

or transcriptomics (14). Integration of transcriptomics and metabolomics reveals significant 

alterations of several metabolic pathways in PCa (15). Hence, in the current study, we used good 

quality omics data sets (genomics, transcriptomics and metabolomics) from public databases to 

better understand tumour progression, subtyping and finding novel biomarkers that potentially 

address individual variations in drug responses among prostate cancer patients. In addition, we 
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shall also provide a simplified protocol for routine integration of multi-omics data sets to answer 

biological questions. 

Methods 

This study used secondary data on genomics, transcriptomics, and metabolomics from publicly 

available databases, using a top-down/bottom-up data reduction approach. Quality data was 

selected with clear quality control standards and accompanying detailed meta-data. Data from 

each platform were analyzed separately and as an integrated data set to determine the power of 

the systems biology approach. Because of the multitude of software used for multi-omics studies, 

the selection of the databases and software/tools was achieved through a screening process 

followed by performance ranking. 

1. Genomics (whole genome sequencing) analysis  

a. Data retrieval and QC 

Multiple sequence data were retrieved from SRA using a script-based sra-toolkit to download 

whole genomic sequence data (PRJNA412953) and converted to fastq format with read 1 and 2 

outputted as separate files. Pre-trimming data quality control was performed on the raw reads 

with MultiQC (43). Afterwards, Trimmomatic-Qc v0.39 (16) was used to trim raw reads with 

quality score (Q-score) < 10 and < 40 residues in length and remove sequencing adaptors. 

Confirmation of read quality improvement was then done by post-trimming data quality check 

with FastQC.  

b. Read mapping and variant calling 

Quality reads were aligned to the reference genome (17) using BWA-MEM (18). The SAM output 

files from BWA-MEM were converted to BAM format using Samtools (19). Read coverage per 

position was then calculated using bcftools tools and call variants. Filtering was performed on 

the SNVs and indels using vcftools, and a variant call file format was generated as the output of 

the run. snpEff was used for the variant annotation to identify the effects of INDELs and SNVs 

and were classified based on their functional impact. Finally, the output file was used for SNP Set 
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Enrichment Analysis (SSEA) (20) to provide pathway name, size, enrichment score and nominal 

p-value associated with prostate samples compared to the control. 

 

Figure 1: The workflow of genomics analysis. It uses WGS data as an input file consisting of 7 

procedures:  Sequence retrieval, Quality check, quality control, Mapping, Variant Calling, Variant 

Prediction and Variant Enrichment Analysis.  

2. Transcriptomics (RNA-SEQ) analysis 

a. Data retrieval and quality control 

Multiple sequence data were retrieved from SRA using a script-based sra-toolkit to download  

RNASeq data (PRJNA531736) and converted to fastq format. One hundred eighty-one prostate 

tissue biopsy cores from Black South African men, 94 with and 87 without pathological evidence 

for prostate cancer.Pre-trimming data quality control was performed on the raw reads with 

MultiQC (43). Afterwards, Trimmomatic-Qc v0.39 (16) was used to trim raw reads with Q-score < 

10 and < 40 residues in length. Confirmation of read quality improvement was then done by post-

trimming data quality check with FastQC. 

b. Read sequence mapping 
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The RNA-Seq quality reads were mapped against the Human reference genome (17) using HISAT2 

(21). The data was visualised using an integrative genomics viewer (22). 

c. Differential gene expression analysis  

Differential expression analysis was carried out by looking at gene expression values for 

comparison among samples. The transcript expression level was quantified by aggregating the 

raw counts of the mapped reads using featureCounts (23). Next, we performed the DGE analysis 

using DESeq2 (24) between control and prostate cancer samples. Fast Gene Set Enrichment 

Analysis (fgsea) R package (42) was used to determine the set of genes which were truly enriched 

in differentially expressed genes. The p-values were then filtered out, which was used as an input 

file in the multi-omics pathway. 

 

Figure 2: The workflow of transcriptomics analysis. It uses RNA-Seq data as an input file 

consisting of 6 procedures: Sequence retrieval, Quality check, Quality control, Mapping, Feature 

Counts and Differential Gene expression analysis. 

3. Metabolomics analysis 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 27, 2023. ; https://doi.org/10.1101/2023.01.26.522643doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.26.522643
http://creativecommons.org/licenses/by-nc-nd/4.0/


Metabolomics data (project ID PR000570) was downloaded from the metabolomics workbench 

(www.metabolomicsworkbench.org). The metadata and the raw data were inspected to ensure 

the phenotype metabolites were in rows and columns, respectively. The metabolite profile data 

was uploaded to the Lilikoi algorithm (25) to standardize the metabolite names from the imputed 

data to various IDs in databases, including the Kyoto Encyclopedia of Genes and Genomes (KEGG) 

and Human Metabolome Database (HMDB). In addition, a comprehensive pathway deregulation 

score (PDS) matrix was generated from the metabolite profiles using the Pathifier algorithm (26), 

and the p-value was subsequently calculated via Chi-square. 

 

Figure 3: The workflow of metabolomics analysis. It uses Lilikoi v2.0 R package composed of a 

feature mapper, preprocessing, dimension transformer, exploratory analysis, and pathway 

analysis. Input data require a metabolomics data matrix and 1 column of a categorical variable 

to specify the case/control status for each subject. The feature mapping converts metabolite 

names to standardized metabolic IDs and transforms them into pathway names. 

4. Integrated multi-omics 
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The goal of our multi-omics integrative analysis was to cluster samples from different omics data 

sets to identify overlapping biomarkers. The multi-omics data analysis comprised mainly three 

broad categories, Regression/Association-based Methods, Clustering-based Methods, and 

Network-based Methods. The p-values of up-regulated genes from the transcriptomics pathway, 

p-values from the lilikoi pathway for metabolomics and p-values of the enrichment score from 

whole genome sequence analysis were uploaded into the Pathway multi-omics tool’s MiniMax 

matrix (27), which sort each omics p-value and output the minimal p-value that links with 

pathways in at least two of the omics. 

 

Figure 4: The workflow of multi-omics analysis. It comprises mainly of three broad categories, 

the p-values of the enrichment score analysis from the whole genome sequence pathway, p-

values of up-regulated genes from transcriptomics and p-values from the lilikoi pathway for 

metabolomics is used as an input into the MiniMax matrix, and this produces common pathways 

from at least two of the omics. 
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Results 

 

1. RNA-Seq Analysis Results 

The differentially expressed genes from the RNA-seq data are shown in figure 5A. The genes in 

normal prostate tissue have a uniform expression. However, the genes in prostate tumours have 

differentially expressed genes between the two phenotypes and within the prostate tumour 

samples themselves. Numerous studies have also shown that some genes are highly expressed 

in prostate cancer tumours (28–30). The volcano plot in figure 5B shows the list of genes highly 

expressed in the prostate tumour, and GLYATL1, RCC1, AMACR, UBE2E3-DT and RAB3B are the 

up-regulated genes and EFNB1 CSTA, SPON1, and GLIST are down-regulated. The cell cycle 

pathway from the Kyoto Encyclopedia of Genes and Genome in figure 5C shows some of the 

genes from the cell cycle that are highly expressed, where some genes that are involved in DNA 

damage checkpoint (ATMATR) are lowly expressed, and some genes involved in DNA biosynthesis 

are highly expressed (ORC, MCM). 

      

 

 

         

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 27, 2023. ; https://doi.org/10.1101/2023.01.26.522643doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.26.522643
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Figure 5: RNA-Seq single omics results (A) Clustering and genes distance. Purple indicates 

normal tissue with the genes having similar expression, and Tortilla shows the prostate tumour 

samples with the genes being expressed differently than the normal. (B) Differentially Expressed 

Genes. The red dots at the right represent genes that are highly expressed, and those at the left 

are genes that are downregulated, while the grey dots in the middle have normal expression. (C) 

Cell cycle pathway associated with prostate cancer. The overlay of RNA-Seq data in the Kyoto 

Encyclopedia of Genes and Genome showed different pathways involved in the prostate 

transcript. The genes in red are up-regulated, genes in green are downregulated, and genes in 

grey have normal regulation  

                               

2.      Metabolomics Analysis Results 
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From the metabolomics dataset, eleven pathways were identified as feature pathways in the 

prostate tissue (Figure 6B). Galactosemia, Galactose Metabolism, Carbon Metabolism, 

Biosynthesis of Amino Acids, Amino Sugar and Nucleotide Sugar Metabolism, Alanine, Aspartate, 

and Glutamate Metabolism are the pathways most relevant to prostate tissue with the highest 

information gain score > 0.010. In figure 6B, the major metabolites associated with these top 

pathways are Geranyl diphosphate, Fructose, Glucose, Mannose, and Pyruvate. The pathways 

and their corresponding metabolites were visualised using the partite graph at (P < 0.05), where 

the cyan nodes are metabolites and the yellow nodes represent pathway features. The metabolic 

pathways are associated with the largest number of metabolites (Figure 6C). Among them, 

dihydroxyacetone phosphate, pyruvate, and 6-phosphoglucose acid have the most weight on 

edge. Many pathways related to amino acid synthesis and metabolism were also highlighted. 

Metabolomics 
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Figure 6: Metabolomics single omics metabolite-pathway relationship results. (A) Metabolites 

Relationship Bar plots. It shows the relationship between the Citrate, Geranyl diphosphate, 

Fructose, Glucose, Mannose, and Pyruvate metabolism pathways. (B) Measured Pathway 

Features. In the measured pathway features, the x-axis represents an information gain score that 

measures the importance of the pathways, and the y-axis displays the names of pathways. (C) 

Bipartite plot with eight pathways and their corresponding metabolites. The cyan nodes indicate 

the metabolites, and the yellow nodes indicate pathways. The red edges are negative 

associations, the blue edges are positive associations, and the thicker edges indicate higher levels 

of association. 

3. Integrative Mult-Omics      approach 

The Minimax pathway-based approach for integrative analysis of multi-omics data with 

categorical, continuous, or survival outcome variables. The input of P     athwayMultiomics is 

pathway p     -values for individual omics data types, which are then integrated using a novel 

MiniMax statistic, to prioritize pathways dysregulated in multiple types of omics datasets. 
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Discussion 

In this multi-omics study, we used publicly available data on genomics, transcriptomics and 

metabolomics from PCa patients conducted on African ancestry. We observed a similar metabolic 

pathway in the RNA-Seq and metabolic data sets from African ancestry. Studies have shown that 

the metabolism patterns of cancer cells are very different from tumour cells, but they both use 

similar pathways, cell growth differentiation and maintenance (31). There are numerous 

molecular alterations during prostate cancer progression (32); for example, from our analysis, 

the glycolytic pathway is highly regulated, which provides the building block for synthesising 

precursors needed for cell growth. The prostate cancer metabolic analysis in figure 1 shows the 

up-regulated pathways and their corresponding metabolites from the African American 

population. Glucose and pyruvate are the major metabolites associated with glycolysis, 

gluconeogenesis, pyruvate kinase deficiency, and the Warburg effect pathway. One of the major 

hallmarks of cancer growth is the ability to sustain its proliferation and tumour angiogenesis (33) 

(31). Pyruvate is an important metabolite from glycolysis, which links many metabolic pathways 

together (34). The upregulation of glycolytic pathways is most likely associated with the high 

energy needed for prostate cancer cells to support their fast proliferation. 

From the up-regulated cell cycle pathway, E2 factor (E2F), Checkpoint kinase 1 (Chk1), and 

Minichromosome Maintenance Complex (MCM) are the up-regulated gene and Transforming 

Growth Factor (TGFR) is down-regulated. The up-regulated genes are majorly used by cancer cells 

to promote tumour growth, cell proliferation and control of cell cycle DNA replication. The 

downregulated gene is involved in inhibiting hepatocytes and epithelial cell growth, and its 

downregulation indicates that prostate cells are growing without control. RAB3B genes have 

been previously shown to be up-regulated in prostate cancer cells to promote cell proliferation 

via NKX3-1 and AR regulation pathways and networks (35) (36). The RAB gene is a family of 

GTPases that regulates cancer progression, enhancing cancer progression, and it has been linked 

with poor prognosis (37). The mechanism of up-regulated RAB38 gene is most likely due to the 

increase in mitochondrial respiration. The metabolic pathways associated with pyruvate 

metabolites are channelled towards oxidative phosphorylation to enhance cell growth. The 
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highly expressed N-acytransferase (GLYATL1) in the present study analysis agrees with other 

studies showing increased gene expression in prostate cancer cells (38–40). The upregulation of 

GLYATL1’s gene has been associated with the early-stage progression of prostate cancer. The 

knockdown of this gene has shown some involvement in the glycolytic pathway, where it inhibits 

cell proliferation (38). This explains why high metabolites are channelled towards the glycolysis 

pathway in our metabolic pathway analysis from the metabolomics data. The Alpha-methyl acyl-

CoA racemase (AMACR) is an enzyme involved in the biosynthesis of fatty acids, and it has been 

shown to be highly expressed in some cancer cells (41). The overexpression of the AMACR gene 

in our RNA data suggests a link with prostate cancer. However, some studies have indicated that 

the expression of the AMACR gene in a tumour is not enough to be used as a diagnostic tool but 

can be combined with other biomarkers. 

Conclusions and next steps 

It is now known and well-acknowledged that identifying biomarkers that can help in the early 

detection, prognosis and treatment of prostate cancer will benefit and save lives, especially those 

of      African ancestry. Our holistic approach identified some common biomarkers in at least two 

omics data sets, as discussed earlier in the multi-omics pipeline. To achieve the current efforts of 

personalised therapy in treating PCa, a complete holistic approach that will include more 

epigenetic and proteomic data to identify more biomarkers that might strengthen the present 

ones is needed. However, a wide range of genetic consortia efforts is still necessary to interrogate 

the genomes of the African population by pooling efforts and resources specifically to address 

prostate cancer in Africa. 

 

Availability and Requirements 

Multi-Omic Data Analytics Integration in Prostate Cancer 

https://github.com/omicscodeathon/cancer_prostate 

Programming language: Bash, R 3.5, Python. 

Other requirements: Python3.6 or higher, Java JDK, Chrome, Firefox, and Safari web browser. 

License: MIT 
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Any restrictions to use by non-academics: None. 

 

Availability of data and materials 

The dataset analysed during the current study as a case study is publicly available at  NCBI 

Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra)  with Project IDs PRJNA412953 & 

PRJNA531736. The metabolomics data PR000570 on Metabolomics workbench 

(www.metabolomicsworkbench.org) The Project repository, which also includes the entire code 

and other requirements, can be downloaded from  

https://github.com/omicscodeathon/cancer_prostate .  

 

Abbreviations 

AMACR: Alpha-methylacyl-CoA racemase 

CLI: Command-Line Interface 

FDR: False Discovery Rate 

GUI: Graphical User Interface 

E2F: E2 factor 

Chk1: Checkpoint kinase 1 

MCM: Minichromosome Maintenance Complex 

TGFR: Transforming Growth Factor 

RAB3B: Ras-related protein Rab-3B 
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