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ABSTRACT 

Among several Mycobacterium tuberculosis potential drug targets, Mycobacterium 

tuberculosis Dihydrofolate Reductase (MtbDHFR) is a key enzyme involved in folate 

metabolism. It is an important target in which its inhibition results in mycobacterial cell death. 

Several successful anti-folates against infectious diseases exist, but none have been developed 

to combat tuberculosis. Previously, two potent anti-tuberculosis phenotypic hits belonging to 

the tetrahydro-1,3,5-triazine-2-amine (THT) family, were predicted and confirmed as 

inhibitors of MtbDHFR. Therefore, optimizing these confirmed hits can lead to a new class of 

anti-tuberculosis compounds that are target specific and highly potent. The study aims to design 

and synthesize tetrahydro-1,3,5-triazine-2-amine derivatives as potential anti-TB hit based on 

the 3D structure of MtbDHFR. Structure-activity relationship (SAR) was applied in the design 

of  113 tetrahydro-1,3,5-triazine-2-amine based on the 3D structure of MtbDHFR. The rest of 

the compounds were designed by scaffold hopping via the synergy of Marvin Sketch (manual 

design) and Spark software program to inflate the library to a capacity of 1700 compounds. By 

considering the key distinguishing features between human-DHFR and MtbDHFR, the matter 

of selectivity was well addressed. Resultantly 23 out of 40 tested compounds favored 

MtbDHFR inhibition over Human DHFR in terms of selectivity. The generated compound 

library was subjected to virtual screening using Auto-Dock Vina to predict the binding 

affinities and the best binding pose of each compound inside the binding site of the MtbDHFR 

target. Next, ADMET studies were then performed to predict the pharmacokinetics and toxicity 

profiles of the designed compounds. Furthermore, Molecular Dynamics (MD) simulations 

were done on four ligand complexes where conformational stability, residue flexibility 

(RMSF), compactness (Rg), and hydrogen bonding were analyzed. The Molecular Dynamics 

(MD) simulation results support excellent binding affinities of these ligands observed earlier 

by molecular docking. The study demonstrated a successful hit to lead optimization and all 

compounds were identified with, binding affinities ranging from -6.5 to -14.1 kcal/mol, 

improved drug-like, and ADMET properties. Two of the high-ranked compounds were selected 

for synthesis. The carbodiimide, DCC-mediated coupling reaction was used to synthesize two 

of the pre-qualified compounds AZ01 and TB1 which had a percentage yield of 74 and 67% 

respectively, paving the way for further exploration and experimentation work such as 

biological assays and potentially preclinical testing. Conclusively it is imperative to mention 

that 1,3,5-triazine scaffolds holds a great promise to the design of novel effective anti-TB leads 

and may be a beacon of hope for the eradication of this global burdensome TB disease. 
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Furthermore, the inter-disciplinary project has advanced basic science at CUT and boosted 

molecule design and synthesis in addition to encouraging inter-disciplinary collaborations. 
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CHAPTER 1  

 

INTRODUCTION 

1.1 Background  

Mycobacterium tuberculosis, a causative agent of a deadly respiratory and communicable 

disease called Tuberculosis (TB) has persisted as a major global threat to human life. TB 

infected and killed a total of 1.5 million people in 2018 as established by the World Health 

Organization (WHO) in 2020. The gravity of the TB epidemic is in the vicinity of 1.7 billion 

people reportedly at the Mtb latent stage and the infected have a higher probability of 

developing TB (Chakaya et al., 2021). Resultantly the current progress to the End TB Strategy 

by 2035 vision as observed by the 2020 global TB report is sluggish and still ‘beyond the black 

stump’ having yielded a decrement of 9% instead of the targeted 20% since 2015.  The length 

of TB treatment often extends to Multi-Drug Resistant (MDR) and several other health 

complications such as patient non-compliance (Wajja, 2004). Recently, Allué-Guardia (2021) 

projected MDR-TB mortality rising to 75 million people, coupled with a massive $16.7 trillion 

in financial implications to the global economy in a timeframe of just 35 years. Stakeholders, 

advocates, and researchers are working together to develop treatment regimens shorter in 

duration, more effective, safer, and well-tolerated (Tiberi et al., 2018). Among several TB drug 

targets, Dihydrofolate reductase (DHFR), a key enzyme involved in folate metabolism, is an 

important target and its inhibition can result in mycobacterial cell death. Although several 

antifolates have proved successful in the treatment of infectious diseases, none have been 

developed to combat TB, thus finding novel agents with a promising pharmacological profile 

remains one of the major challenges for medicinal chemists, as testified by the literature trends 

of the last 20 years. Thus, as evidenced by the literature trend over the last 20 years, finding 

novel agents with a promising pharmacological profile remains one of the major challenges for 

medicinal chemists. Failure of many drugs to obtain FDA approval as a result of several 

unsatisfactory attributes such as low efficacy, potency, selectivity, toxicity,  have delayed the 

availability of a new drug to patients. The realization that 90% of the drugs entering clinical 

trials fail to get FDA approval (Leelananda, & Lindert, 2016) is an undesirable characterisic 

and therefore calls for urgency in the utilization of high-minded methodologies in drug 

discovery.  



2 
 

Methotrexate (MTX) and trimetrexate are antifolate drugs that have a high affinity for DHFR 

and can inhibit DNA synthesis and cell proliferation (Lin & Gerson, 2014). These compounds 

are not useful as antibacterial drugs because of their poor selectivity despite having 

antibacterial activities (Li et al., 2011). Among many of their medicinal uses, including 

bactericidal effects, antifolates are also used in cancer chemotherapy.   

The approach of Structure-based drug design (SBDD) in this study made use of 3D Crystal 

structure of Mtb-DHFR target to actualize and predict those ligands that are likely to establish 

optimal interactions with the binding site. 

From a design standpoint, compound library generation or build-up was executed with factors 

such as selectivity, affinity, potency, efficacy, and toxicity in mind. With a cognitive 

understanding of one of the most noteworthy distinguishing features between the crystal 

structure of Mtb-DHFR and H-DHFR which is the absence of a glycerol-binding motif in H-

DHFR but contrarily is ubiquitous and tightly bound in Mtb-DHFR., therefore we designed a 

series of small-molecule compound analogs in which the non-triazine moiety was joined to a 

1, 2, 3-triol. This school of thought was derived from El-Hamamsy et al. (2007) with the agenda 

to mimic the binding signature of Methotrexate deep in the dihydrofolate-binding pocket to 

optimize DHFR enzyme selectivity. Adopting El-Hamamsy et al.’s idea in designing a better 

triazine derivative molecule containing a glycerol-mimicking triol should occupy both the 

DHFR binding pocket and the glycerol binding pocket giving rise to better selectivity toward 

MtbDHFR inhibition. All these insights inspired the research to apply two techniques i.e 

structure-activity relationship and scaffold-hopping concepts to design compounds with 

modified selectivity, improved affinities, or bio-activities, and essentially to attain novel 

patentable isolobal analogs. In these research endeavors to discover new tuberculosis drugs, 

the polypharmacology approach could be realized to gain mastery over the issues of resistance. 

Polypharmacology is referred to as a phenomenon involving (a) one drug acting on diverse 

targets of a specific distinctive disease pathway or (b) a promiscuous drug related to several or 

more than one disease pathway (Stelitano et al., 2020; Reddy & Zhang, 2013). This concept is 

similar to drug promiscuity and it seems to conflict with drug selectivity, which describes the 

ability of a drug to affect a specific intended receptor target or macromolecule, however, both 

selectivity and promiscuity are important attributes in drug discovery. Additionally, many 

successful drugs are promiscuous (Mencher & Wang, 2005). During Structure-based design 

with respect to selectivity, one of our prime goals was to hyperbolize desirable and favorable 
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[triazine ligand(s) – MtbDHFR] interactions while making unfavorable the [triazine ligand(s) 

– h-DHFR] and other undesirable off-target interactions.  

In building our compound dataset it was imperative and a prerequisite to consider but strike a 

balance between structural novelty and its physicochemical properties, including lead-like 

(Congreve et al. 2003) and drug-like (Lipinski, 2004) properties. Consequently, it is of 

paramount importance to leverage the available chemoinformatics approaches to assess and 

determine their lead-like properties. This is a wise ideology before synthesis because it serves 

time and laboratory costs. This research was therefore inspired to yield lead-like anti-TB 

molecules.  

1.2 Problem Statement  

Tuberculosis (TB) is ubiquitous in all corners of the world. While humans in all age brackets 

are at risk, TB is dreadfully infecting adults at their productive age, and more than 95% of 

recorded cases and deaths emanate from developing countries (WHO, 2021). Inexpedient 

contributors such as the attrition rate in drug development, and the available treatment options, 

which are stultified by drug resistance, poor-patient compliance, slow-acting drugs, 

technological demerits of the presently used therapeutics, etc. (Hussain et al., 2019) have 

turned out to be abortive to the 2030 SDG and  WHO’s End TB Strategy (WHO., 2015). This 

problem is being further catastrophized by the emerging MDR-TB which mortality was 

predicted to acclimatize to 75 million people with a penalty of $16.7 trillion in financial 

implications to the global economy in a timeframe of just 35 years if appropriate efforts are not 

enacted. Stakeholders, advocates, and researchers are working together to develop treatment 

regimens shorter in duration, more effective, safer, and more well-tolerated (Tiberi et al., 2018). 

Among several potential Mycobacterium tuberculosis drug targets, Dihydrofolate Reductase 

(DHFR) a key enzyme involved in folate metabolism is an important target, and its inhibition 

results in mycobacterial cell death. Several successful anti-folates against infectious diseases 

exist, but none have been developed to combat tuberculosis. Previously, two potent anti-

tuberculosis phenotypic hits belonging to the tetrahydro-1,3,5-triazin-2-amine (THT) family, 

were predicted and confirmed as inhibitors of Mtb DHFR. Therefore, optimizing the confirmed 

hits would lead to a new class of anti-tuberculosis compounds that are target specific and highly 

potent. 
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CHAPTER 2     

 

LITERATURE REVIEW 

2.1          Epidemiology of Tuberculosis  

Following a UN high-level-TB meeting that brought about the resolution that an annual US$13 

billion must be provided for TB diagnosis, treatment, and prevention (Tuberculosis n.d.), it is clear 

that tuberculosis is undeniably a global catastrophe.  When the same meeting (UN-high-level TB 

meeting) was held in 2018 in which they established 2018-2022 goals, they agreed in the meeting, 

to provide treatment for 40 million people, TB immunization to 30 million people, 1.5 million 

people with MDR-TB, as well as 6 million HIV infected persons (UNHLM ON TB Key Targets 

and Commitments | Stop TB Partnership). Tuberculosis is not only a global concern but a threat to 

all age groups therefore the UN-high-level TB meeting also prescribed treatment provisions at the 

household level to 4 million children with ages between  0 to 5 years and 20 million to those within 

the age group above five years (Stop TB Partnership, 2020). Early diagnosis of TB patients should 

be prioritized if the world is determined to curtail the mortality rate together with the treatment 

costs. The End TB Strategy incorporates systematic screening, which can achieve early TB 

diagnosis effectively (WHO, 2021). Table 2.1 shows the TB commitments at the global level and 

the End TB Strategy. 

Table 2. 1: Global TB commitments and The End TB Strategy and Targets. This information was derived from the 

Global tuberculosis report 2021. Geneva: World Health Organization; 2021 

VISION  A WORLD FREE OF TB 

-zero death, disease, and suffering due to TB 

GOAL  END THE GLOBAL TB EPIDEMIC 

INDICATORS  MILESTONES TARGETS 

2020 2025 2030 2035 

https://www.stoptb.org/advocacy-and-communications/unhlm-tb-key-targets-and-commitments
https://www.stoptb.org/advocacy-and-communications/unhlm-tb-key-targets-and-commitments
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Percentage reduction in the absolute number of 

TB death (Compared with the 2015 baseline) 

35% 75% 90% 95% 

Percentage reduction in the TB incidence rate 

(compared 

20% 50% 80% 90% 

Percentage of TB-affected households facing 

catastrophic costs due to TB (level in 2015 

unknown  

0% 0% 0% 0% 

  

The information in Table 2.1 describes the resolutions of a joint venture between the World Health 

Organization (WHO)’s End TB Strategy and the UN Sustainable Development Goals (SDGs). The 

TB mortality growth in 2020 was largely attributed to diagnosis obstructions and treatment 

disturbances at the hands of the COVID-19 pandemic (https://tbfacts.org/tb-statistics/). Since both 

tuberculosis and COVID-19 are respiratory diseases, it is imperative to promote and conduct 

COVID-19 coinfection in patients with TB. Investigations determining coinfection are of 

paramount importance because patients with TB can experience a much more intense illness with 

a higher probability of succumbing to death from COVID-19 (Coronel et al., 2021).   

2.2          Attributes of Mycobacterium Tuberculosis 

Mycobacterial tuberculosis virulence is centered on its capacity to invade and stay inside host cells 

and its ability to combat and survive the microbicidal effects of macrophages (Echeverria et al., 

2018). The arrangement of the critical and unique features of the Mycobacterial cell wall, such as 

mycolyl-arabinogalactan-peptidoglycan complex, and the phosphatidyl-myo-inositol-based 

lipoglycans, provide an attractive target for the anti-tuberculosis agent development (Jankute et 

al. 2015). Some potentially rich sources of TB drug targets are found in cell wall biosynthesis, and 

energy metabolism (Cardoso et al., 2022).  

The Mycobacterium tuberculosis (Mtb) pathogen exercises varying intrinsic mechanisms that 

enable it to resist and survive six months of drug therapy. Mtb leverages to its advantage the 

possession of an exceedingly impermeable and thick lipid-rich hydrophobic cell wall envelope that 

suppresses the influx of many anti-TB chemotypes especially hydrophobic drugs (Sarathy et al., 
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2012). The peptidoglycan determines the shape of the Mtb cell wall structure ( Figure 2.1), by 

helping it withstand turgor pressure, providing a communication interface, and defense barrier 

against the threats of its external environment (Alvarez et al., 2014; Cava, 2014). M. tuberculosis 

is neither categorized as gram-positive nor gram-negative because of its unique structural 

components, such as the peptidoglycan, which is the determining factor and the reason Mtb falls 

into the class of acid-fast bacteria (Vilchèze & Kremer, 2017; Baker et al., 2019).  

 

Figure 2. 1: The cell components of the M. tuberculosis structure and sites (potential attractive targets) of inhibition 

by anti-TB drugs 

It is more likely that tuberculosis distribution and incidence could hike globally in 2022-2023 on 

account of the COVID-19 pandemic impact (WHO, 2021). The new cases (about 500 000) 

regarding multidrug or rifampicin-resistant TB have been reported to occur annually, and 

statistically only one in three cases were confirmed to have received treatment (WHO, 2022). 

Newly developed, drug-resistant TB treatment-approved anti-TB drugs such as delamanid, 

bedaquiline and pretomanid can effectively regulate and control TB if made available to patients 

(WHO, 2020). One major concern which has also plummeted political debate and advocacy in 

both developing and developed countries is the urgent need to avail these new anti-TB drugs at 

affordable drugs, especially in poor or developing countries (Gunther et al. 2023).    

Regarding drug resistance, some recent researches investigated several factors, such as efflux 

pumps, membrane energetics as well as cell wall biosynthesis processes. Porin channels are 

transporters outside the M. tuberculosis cell wall, which can mediate the influx of drugs but are 
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also thought to be connected to the interior walls imparting efflux of drugs detrimentally 

contributing to antibiotic resistance (Niederweis et al, 2010). These efflux pumps can provide a 

striking target for designing and developing next-generation anti-TB agents. However, research 

findings by Remm and co-workers could not significantly point out any of these factors as 

responsible for drug resistance (Remm et al., 2022).  

2.3         Dihydrofolate Reductase, DHFR 

Dihydrofolate reductase (DHFR) is a key enzyme that plays an integral role in the biosynthesis of 

co-factors such as tetrahydrofolate, which in turn is an essential precursor to the biosynthesis of 

purines, thymidine nucleotides, and several amino acids like glycine, and methionine, (Bertacine 

et al, 2018). As far as its catalytic phenomena, DHFR structure has three crucial functional loops, 

which include the Met20 loop that possesses 9–23 residues, the F-G loop has 116–132 residues, 

and the G-H loop of 142–149 residues. The structure of DHFR is illustrated in Figure 2.2 (Mauldin, 

2012). Based on experimental (Bhabha et al, 2011) and theoretical techniques (Agarwal et al. 2002; 

Rod, Radkiewicz, & Brooks III, 2003) catalysis is also imparted by motions among the loops.   

 

Figure 2. 2: The DHFR structure in complex with NADPH (purple) and methotrexate (yellow). The functional loops 

are F–G (blue), Met20 (red), G–H (green) while G121V signposted by a sphere (cyan) symbolizes the scene of 

mutation. 
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Mutation in the structure of DHFR commonly occurs in glycine (Watney, Agarwal, & Hammes-

Schiffer, 2003).  (G121) highlighted in Figure 2.2. 

2.4          Differences between Mtb-DHFR and h-DHFR  

The DHFR enzyme is ubiquitous in both microorganisms and humans. There are however 

distinctive features between human DHFR (h-DHFR) and M. tuberculosis DHFR (Mtb-DHFR) 

that are key to the discovery or identification of next-generation anti-TB agents. This consideration 

is crucial when designing Mtb-DHFR selective inhibitors to minimize the probability of inhibiting 

off-target molecules like h-DHFR, thus minimizing side effects. However, clinically effective anti-

TB drugs have more or similar selectivity and affinity to the h-DHFR (Sharma et al., 2020).  

Despite its universality in humans and MtbDHFR structure accounts for only 26% of similarities 

differing only in their active binding pockets (Kobayashi, 2014). In M. tuberculosis, DHFR (Mtb-

DHFR) binding site is a glycerol binding motif usually bonded to Asp 27, Gln 28 and Leu 24, and 

this glycerol binding motif is absent in human DHFR leaving its site occupied by hydrophobic Leu 

22, Pro 26 and Phe 31 residues (Sharma, 2018; Niederweis et al, 2010). Some of these fundamental 

differences are highlighted in figure 2.3. 

 

Figure 2. 3: Binding site structure of (a) Mtb-DHFR versus (b) h-DHFR. The glycerol binding moiety seen in (a) Mtb-

DHFR close to MXT is absent in (b) h-DHFR (Li et al. 2000). 

The other distinguishing feature between h-DHFR and Mtb-DHFR is 187 amino acid residues of 

h-DHFR compared to 159 of Mtb-DHFR (El-Hamamsy et al., 2007). This also, therefore, implies 
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that the h-DHFR is larger than the Mtb-DHFR. Exploration of these differences provides the basis 

for designing novel selective Mtb-DHFR inhibitors that will not favor the binding of human 

DHFR.  

2.5 Application of In-silico Technics in Anti-Tuberculosis drug discovery 

This section focuses on applying chemoinformatics in TB drug discovery in synthetic and natural 

products.  In the quest for more effective drugs, remarkable improvements in computational power 

coupled with advancements in AI technology can be used to revolutionize the drug development 

process (Mak & Pichika., 2019). The combination of factors such as the phenomenal increase in 

compound databases, remarkable boosts in computing power, transformational achievement in 

learning algorithms, etc., are at the prime of adoption by medicinal chemists in the actualization 

of effective therapeutic medicines. Artificial Intelligence (AI) is widely applied in disease 

diagnosis in which. Xiong et al. (2018) in their study investigated the clinical efficacy of artificial 

intelligence (AI)-assisted detection method for acid-fast stained TB bacillus. In their investigation, 

Xiong et al. (2018) also concluded that TB-AI can be a potential support system to detect stained 

TB bacilli and help make sound clinical decisions. In addition, TB-AI holds the potential to relieve 

the heavy workload of pathologists and increase detectability and chances of accuracy in diagnosis. 

We are focusing on the modernistic Insilco approaches in TB drug designing and discovery from 

natural products by a glimpse of the great intervention of the cutting edge, highest level general 

development of cheminformatics.           

Almost every society globally has skimmed and substantiated the medicinal value of plants and 

natural products. Thus, the world has benefited from natural products emanating from various 

sources, including marine organisms, terrestrial plants, vertebrates and invertebrates, and 

terrestrial microorganisms (Newman et al., 2000). Nature being depended upon as a source of folk 

medicines brought about bioactive organics such as salicylic acid (the precursor of aspirin), 

antimalarial quinine, and morphine, which was isolated from the opium poppy, etc. (Raja et al., 

2010). Yuan et al. (2016) realized that the discovery of new drugs by entirely depending on modern 

technologies was almost unrewarding because the adoption of high throughput screening and 

combinatorial chemistry-based-drug development could not deliver expected drug productivity 

since the 1980s. However, beyond the traditional use of folk medicines, in-silico approaches have 
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been widely recognized as useful for drug discovery (Lagunin et al., 2014). In-silico drug 

discovery can take advantage of many available chemical databases, medicinal plants, and chemo- 

and bioinformatics tools. The number of existing databases grows annually. The contribution of 

computational technics (in-silico methods) in drug discovery will grow soon. In these research 

endeavors to discover new tuberculosis drugs, the polypharmacology approach could be 

implemented to gain mastery over the resistance issues. Polypharmacology can be defined in two 

ways which are (a) a phenomenon involving a single drug acting on multiple different targets of a 

unique disease pathway or (b) a single drug acting on multiple targets of multiple disease pathways 

(Stelitano et al. 2020; Reddy & Zhang, 2013). 

Using DNA sequencing data, Machine Learning (ML) can be used to predict tuberculosis drug 

resistance. Several machine learning tools have found applications in drug discovery, including 

GOLD, Deep PVP, LIB, and SVM. Machine learning has algorithms such as support vector 

machine (SVM), random forest (RF), decision tree, and Artificial Neural Networks (ANN) 

(Nayarisseri et al., 2021). Within the drug discovery pipeline, Machine Learning (ML) techniques 

are employed in various methods and stages that comprise Structure-based Virtual Screening 

(SBVS), Ligand-based Virtual Screening (LBVS), Structure-based Drug Design (SBDD), ligand-

based drug design (LBDD), drug repurposing, quantitative structure-activity relationship (QSAR) 

modeling, and ADMET analysis (Antolín, 2021).  

From the kingdom Fungi, endophytic fungi can produce two natural bisantharaquinone, (+)-1,1'-

Bislunatin (Bis) and (+)-2,2'-Epicytoskyrin A (Epi). These two secondary metabolites, Bis and 

Epi, possess potent bactericidal effects in which in-silico virtual screening using glide confirmed 

good biological activity against Mtb H37Rv with docking scores of -8.427 kcal/mol and -7.481 

kcal/mol (Oktavia et al. 2020). The applied in-silico approach is an example of structure-based 

drug design. Oktavia et al. 2020 capitalized on the knowledge of the 3D macromolecular 

receptor/target of Mtb H37Rv and employed molecular docking using the glide docking tool. The 

anti-Mtb properties of Indonesian natural products isolated from Rhoeo spathacea and Pluchea 

indica were gratified and confirmed using structure-based drug discovery to be inhibitors of M. 

tuberculosis CYP121 target following a virtual screening of ligands by AutoDock Vina software. 

Subsequently, the mechanism of inhibition of the identified secondary metabolites was full-

fledged by molecular dynamics simulation using YASARA software (Prasasty et al., 2020). Zhang 
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et al. (2021) performed structure-based virtual screening using Discovery Studio, a molecular 

docking software tool using a commercial library of natural products provided by Enamine (Kyiv, 

Ukraine). After applying these chemoinformatics tools, Zhang et al., 2021 identified the F0414 

compound as a potent inhibitor of the Mt-dUTPase target with confirmed bioactivity against M. 

tuberculosis.   

Ligand-based approaches for TB drug discovery have consisted primarily of quantitative structure-

activity relationship (QSAR), three-dimensional (3D)-QSAR, and pharmacophore models. 

Agrawal et al. (2007) used ligand-based pharmacophore modeling and structure-based virtual 

screening by molecular docking to identify and shortlist 15 natural product compounds with better 

anti-Mtb activities.  

Data analytics software called KNIME provides a rich palette of tools that can remarkably 

empower ligand and structure-based drug design and optimization in the search for potent and 

selective inhibitors of Mycobacterium tuberculosis (Mtb) from natural products. For example, 

KNIME pipeline software was used to filter 350 compounds from the Zinc database before virtual 

screening (docking) by virtue of 20 calculated molecular descriptors on the knowledge of the Mtb-

EthR target binding pocket (Tatum et al., 2017).  

For building compound libraries, ChemT (http://www.esa.ipb.pt/) software from BioChemCore is 

an ideal, easy-to-use open-source chemoinformatic tool (Abreu et al. 2011). Using approved drugs, 

for example, TB drugs such as isoniazid, rifampicin, ethionamide, natural product anti-TB agents, 

or even any other drug that has been removed from the market for various reasons not limited to 

risks outweighing benefits and many other reasons such as resistance, ChemT can take center stage 

to automatically generate custom-made template-based chemical libraries at the heart of drug 

optimization, drug repurposing.  Data Warrior (https://openmolecules.org/datawarrior), the open-

source software for Data Visualization and Analysis with Chemical Intelligence, is also vital to 

chemical library generation and expedites Lipinski rule of five among its several exploits (Sander 

& Freyss, 2015). Therefore all these in-silico approaches can find their application in TB drug 

discovery.   

For the calculation and analysis of various molecular descriptors and several molecular 

fingerprints, a new generation software tool called alvaDesc, provided by alvascience, has been 

made available (Mauri, 2020). Another companion software provided again by alvascience is the 

http://www.esa.ipb.pt/
https://openmolecules.org/datawarrior
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alvaMolecules tool (www.alvascience.com), which can help standardize data structures and 

molecular structure curation. This includes rectifying erroneous structures such as unusual valence, 

multiple structures, chirality, aromaticity, excess hydrogens, etc. Another alvascience software 

called alvaModel http://www.alvascience.com/alvamodel/ can be appropriately devoted to ligand-

based drug discovery approach due to its ability to create Quantitative Structure-Activity/Property 

Relationship (QSAR/QSPR) models. To  determine the lead-like and drug-like properties of 

compound structure and, even during lead optimization, the QSAR/QSPR) models are paramount 

in their ability to predict physicochemical, biological, and environmental properties, promoting 

potential anti-TB molecules to the next stages of the drug discovery pipeline. From the aptitude of 

these prowess software programs, the application of alvaDesc, alvaMolecules, and alvaModel in 

anti-TB natural product discovery can be successful and handy in streamlining the discovery 

process.  

Driven by this evidence of technological breakthroughs, chemoinformatics can circumvent M. 

tuberculosis’s formidable burdensome emerging strains through the diverse chemical space of 

anti-TB secondary metabolites in natural plant products.   

2.6 Chirality and Its Role in Drug Research 

By definition, chirality is the potential and ability of the compound molecule to exist in two 

enantiomeric asymmetrical non-superimposable mirror images of each other. Maintaining bond 

orders, atomic composition and atomic composition chirality phenomenon can occur nonetheless.  

One of the critical objectives in drug discovery is to develop drug molecules that are safe and 

target-specific. The property of molecular chirality comprehensively offers a great deal of 

complexity in navigating toward achieving this objective (LaPlante et al., 2011). Enantiomers of 

the chiral molecule are most likely to be significantly distinctive in various properties including 

biological activity, toxicity, pharmacodynamics, and pharmacokinetics (Eichelbaum & Gross 

1996). When both mirror-image enantiomers occur in equal proportions are called racemates and 

there are adverse effects attributable to one of the enantiomer present in the racemic mixture. The 

second enantiomer may be toxic and less biologically active and could have the ability to interfere 

with the more biologically active enantiomer by competitively binding to the same active site. An 

example of chiral molecules include thalidomide and perhexiline, whereas the left-hand 
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enantiomers of these respective two renowned drugs were potent and effective, their right-hand 

molecules were revealed with teratogenic effects and unsafe (Vargesson, 2019). Each enantiomeric 

pair molecule may form distinct interactions inside the target’s binding site, resulting in 

undesirable ADMET effects. In the case of thalidomide which was past prescribed to pregnant 

women to alleviate morning sickness, the impact of the right-hand enantiomer resulted in many 

around 100000 infants being born with severe birth defects (Smithells & Newton, 1992; 

Vargesson, 2019; Johnson, 2018; Magazanik, 2015). The enantiomeric pair may also have 

different drug-drug interaction experiences. Owing to this fact, it is highly recommended to take 

into account stereoselectivity in the early stages of drug development to get the better of associated 

adverse effects. Chirality in drugs can also evolve from atropisomerism, a phenomenon where a 

bond rotation is hindered about its axis (Blaser, 2013). Chirality is common in various organic 

molecules, including amino acids and also glucose. Inspired and necessitate by the motive to 

develop new drugs, the US Food and Drug Administration (FDA) published new guidelines in 

1992 expressing the significance of absolute stereochemistry or enantiopurity for all chiral 

compounds www.fda.gov./cder/guidance/stereo.htm (Amouri & Gruselle, 2008). Regarding chiral 

molecules, designing and synthesizing enantiopure molecules enhances the chances of producing 

drugs with safer and improved efficacy. Modern organic synthesis techniques and separation 

methods of asymmetric synthesis have so far advanced chiral drug discovery and development, 

and chiral separation, resultantly an influx of at least 75% of new drugs introduced to the market 

around the year 2011 were single enantiomers (Huang et al., 2011). From 2011 to date, a 

considerable amount of chiral anti-TB agents have been developed from various sources including 

natural products, high throughput screening (HTS) hits, and other famous anti-TB agents. 

2.6.1 Anti-TB Chiral Drugs 

Of the first-line TB drugs (figure 2.4.), 60% (i.e. 3 out of 5) which include rifampicin (RMP), 

ethambutol (EMB), and streptomycin (SM) can rotate the plane of polarized light (comprise chiral 

centers) and are administered in their optically active pure forms. 

http://www.fda.gov./cder/guidance/stereo.htm
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Figure 2. 4: First-line drugs in their 2D structures 

It was observed that the S, S enantiomer from the chiral EMB is highly antimycobacterial (i.e. 500 

fold) than its R,R isomer which can cause blindness due to optical neuritis (Upadhyay et al., 2020). 

Exploiting the cheap chiral source from camphor, Perkova et al. (2014) used the β-aminoalcohol 

EMB fragment and a chiral camphane scaffold to develop camphor molecule derivatives of which 

some were 25 times better than EMB in terms of antimycobacterial activity.  

The computational examination of chirality is possible with software programs like alvaDesc 2.0 

which was adopted for this study. The alvaDesc software can calculate the number of chiral 

centers, chiral moment (similar to the moment of inertia but centered at the chiral center), and 

chiralPhMoment (similar to chiralMoment, but only taking the N/O atoms into account. 
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2.7 Molecular Dynamics Application in Drug Discovery 

As showcased by vast applications in recent research, Molecular Dynamics simulations have 

become of paramount importance to drug discovery. Mortier et al. (2015) conducted four-year 

span research in which they reviewed the influence and impact of MD simulations in the landscape 

of medicinal chemistry with particular attention to ligand-protein interactions. The accuracy of 

ligand-target residence time in predicting in vivo drug efficacy (Mollica et al., 2016) serves as the 

archetype of a target that holds allure for the design of next-generation anti-TB agents. Molecular 

dynamics (MD) simulations are frequently used to leverage their capacity to efficiently sample the 

configuration space, which enables in-depth examination of structural stability and biochemical 

processes in drug discovery, such as ligand binding and other enzymatic processes (Marco & 

Gago, 2007). Several force fields that include AMBER (Duan et al., 2003), OPLS (Kaminski et 

al., 2001) or CHARMM (Brooks, 2009), etc., are an integral part of molecular dynamics 

simulations. It has long been primarily recommended to perform all computer simulations in GPU 

as much as in CPU due to a retarded transfer of data between GPU and CPU. However, this setup 

has drastically turned in the direction that favors the use of CPU due to technological advancement 

in recent times (Krieger & Vriend, 2015). Through MD simulations, crucial ligand determinants 

such as binding energetics and kinetics of the candidate molecules can be evaluated to facilitate 

further development in the drug discovery pipeline. Examples of software packages for MD 

simulations include GROMACS (Hess, 2008), CHARMM, NAMD (Phillips et al., 2020), 

AMBER (Salomon‐Ferrer, Case, & Walker, 2013), etc. To streamline the process of MD 

simulations, a web-based graphical user interface CHARMM-GUI, http://www.charmm-gui.org 

has become of grandest application for preparing complex biomolecular systems. For a number of 

MD packages such as GROMACS, CHARMM, GENESIS, Desmond, AMBER, LAMMPS, 

OpenMM, and CHARMM/OpenMM, CHARMM-GUI is handy in executing input file preparation 

(Jo et al, 2017). Table 2.2 shows some commonly used MD simulation packages in drug discovey.  

Table 2. 2: Some examples of molecular dynamic (MD) packages commonly applied in drug discovery.  

Software Simulation system Reference 

http://www.charmm-gui.org/
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GROMACS 

Proteins, 

carbohydrate, lipids, 

nucleic acids 

Van Der Spoel, D., Lindahl, E., Hess, B., 

Groenhof, G., Mark, A. E., & Berendsen, H. J. 

(2005). GROMACS: fast, flexible, and 

free. Journal of computational chemistry, 26(16), 

1701-1718. 

CHARMM 

Proteins, nucleic 

acids lipids, 

carbohydrates,  

Brooks, B. R., Brooks III, C. L., Mackerell Jr, A. 

D., Nilsson, L., Petrella, R. J., Roux, B., ... & 

Karplus, M. (2009). CHARMM: the biomolecular 

simulation program. Journal of computational 

chemistry, 30(10), 1545-1614. 

Desmond Proteins, lipids https://www.schrodinger.com/desmond 

AMBER 

Proteins, 

carbohydrates nucleic 

acids,  

Case, D. A., Cheatham III, T. E., Darden, T., 

Gohlke, H., Luo, R., Merz Jr, K. M., ... & Woods, 

R. J. (2005). The Amber biomolecular simulation 

programs. Journal of computational 

chemistry, 26(16), 1668-1688. 

NAMD 

Proteins, 

carbohydrates, lipids, 

nucleic acids, 

Phillips, J. C., Zheng, G., Kumar, S., & Kalé, L. 

V. (2002, November). NAMD: Biomolecular 

simulation on thousands of processors. In SC'02: 

Proceedings of the 2002 ACM/IEEE conference 

on Supercomputing (pp. 36-36). IEEE. 

LAMMPS 

Proteins, lipids, 

carbohydrates, 

nucleic acids 

https://lammps.sandia.gov/ 

 

Post MD simulations, the trajectories of the generated results will be generated after simulation 

can be subjected to analysis in terms of RMSD (root mean square deviation), RMSF (root mean 

square fluctuation), Rg (radius of gyration), Hydrogen bond analysis, and either Molecular 

mechanics Poisson–Boltzmann surface area (MM-PBSA) or Molecular mechanics 

generalized Born surface area (MM-GBSA) free energy calculations (Elfiky, 2021; Ibrahim et al., 

2020). Ligand-binding stability and equilibrium can be determined by root-mean-square 

https://www.schrodinger.com/desmond
https://lammps.sandia.gov/
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deviations (RMSD) obtained through MD simulations. RMSF (root mean square fluctuation) can 

measure the flexibility of the enzyme (receptor) backbone structure, while the radius of gyration 

represents the compactness of the structure (Ferdausi et al, 2022). 

2.8          Databases of Mycobacterium Tuberculosis  

The revolution of data repositories, data mining, and management has motivated researchers to 

leverage the emerged big data era, transforming the pursuit of TB chemotypes from hype to hope. 

The protein Data Bank (www.rcsb.org) (Berman., 2000) contains 185,158 biological 

macromolecular structures for various proteins, including those of Mycobacterium tuberculosis, 

which are empowering breakthroughs in voluminous in-silico drug discovery studies worldwide. 

The lack of drug(s) effective against TB (Peloquin & Davies., 2021) and the sprouting idea of big 

data and computational approaches can only mean that more rigorous efforts are needed in TB 

drug discovery to maximize the advantages provided by these computational tools in the search 

for novel effective TB drugs and even in drug-repurposing. UniProt (https://www.uniprot.org/) is 

also a critical data repository of comprehensive, high-quality, and freely accessible resources of 

protein sequence and functional information. Linked to UniProt is Mycobrowser 

(https://mycobrowser.epfl.ch/) (Kapopoulou et al., 2011) and together with TB Database 

(http://tbdb.bu.edu/tbdb_sysbio/MultiHome.html) (Reddy et al., 2009; Galagan et al., 2010), the 

two are the particular specific data repositories for TB or and Mycobacterium protein information. 

TB database and Mycobrowser house genomic and proteomic data for Mycobacterium, such as 

genes, mycobacterium genomes, gene expression correlation, gene epitopes, and experimental and 

computational models of TB molecular pathways. In table 2.3 we have compiled some of the drugs 

approved drugs designed by in-silico drug discovery techniques. 

Table 2. 3: Examples of drugs approved by In-silico drug discovery techniques  

Drug  Type of Machine 

Learning employed  

Receptor/Target  Approved  

Grazoprevir 

(Zepatier) 

Molecular Modelling 

and Docking-derived 

NS3/4 A protease 2016 

http://www.rcsb.org/
https://www.rcsb.org/search?query=%7B%22type%22%3A%22terminal%22%2C%22service%22%3A%22text%22%2C%22parameters%22%3A%7B%22attribute%22%3A%22rcsb_entry_container_identifiers.entry_id%22%2C%22operator%22%3A%22exists%22%7D%7D
https://mycobrowser.epfl.ch/
http://tbdb.bu.edu/tbdb_sysbio/MultiHome.html
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approach (Athanasiou 

et al., 2019) 

Lifitegrast Structure-based 

rational design 

(Macalino et al., 

2018) 

LFA-1/ICAM-1 2016 

Rucaparib (Zepatier) Ligand-based 

molecular modeling 

(Athanasiou et al, 

2019) 

Poly (ADP-ribose) 

polymerase (PARP-

1) 

2016 

Venetoclax Rational design for 

BCL-2 (Macalino et 

al, 2018) 

Bcl-2/(BAX/BAK) 2016 

Acalabrutinib SAR (Barf et al., 

2017), SBDD and 

Docking 

(Abdelhameed et al., 

2019) 

Bruton's tyrosine 

kinase 

2017 

Betrixaban Molecular Docking 

(Athanasiou et al., 

2019) 

Serine protease 

Factor Xa (fXa) 

2017 

Brigatinib (Alunbrig) Docking and 

Homology Modelling 

(Athanasiou et al., 

2019) 

AKL 2017 

Copanlisib 

Hydrochloride 

SBDD (Xray 

crystallography and 

Phosphoinositide 3-

kinase (PI3K) 

2017 
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Docking) and LBDD 

(based on lead 

scaffold) (Scott et al., 

2016) 

Ivosidenib LBDD coupled with 

broad SAR profiling 

and modification 

(Popovici-Muller et 

al., 2018) 

Isocitrate 

dehydrogenase-1 

(IDH1) 

2018 

Abemaciclib Structure-activity 

relationship studies in 

conjunction with 

structure-based 

design (Gelbert et al., 

2014) 

Cyclin-dependent 

kinase 

2018 

Glasdegib Maleate SAR (Munchhof et 

al., 2012) 

Hedgehog pathway 2018 

Apalutamide SBDD and SAR 

(Jung et al., 2018)  

Androgen receptor 

inhibitor 

2018 

Larotrectinib 

Sulphate 

LBDD with SAR and 

crystal-binding mode 

similarity (Jiang et 

al., 2021) 

Tropomyosin-related 

kinase 

2018 

Duvelisib SBDD (Molecular 

docking, virtual 

screening) and LBDD 

(lead optimization 

PI3K Kinase 2018 
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and SAR) (Jia et al., 

2019) 

Lorlatinib SBDD and physical 

property-based 

optimization 

(Nagasaka et al., 

2020; Johnson et al., 

2014) 

Tyrosine kinase 2018 

Erdafitinib Combined FBDD and 

SBDD (Murray et al., 

2019) 

FGFR tyrosine 2019 

Darolutamide SBDD (Docking and 

MD) (Liu et al., 

2018) 

Androgen receptor  2019 

Entrectinib SBDD and SAR 

(Menichincheri et al., 

2016) 

Tyrosine kinase 

inhibitor 

2019 

Remdesivir 

 

Homology 

Modelling, SBDD 

(Molecular docking) 

(Biasini et al., 2014; 

Elfiky, 2020). 

SARS-CoV-2 RdRp 2020 

 

2.9          Scaffold-Hopping Technique  

Scaffold hopping is a subset of bioisosteric replacement (Brown, 2014), defined by Schneider et 

al. as a technique for identifying isofunctional molecular structures with significantly different 

backbones (Schneider et al., 1999). Scaffold hopping activity can begin with at least one 
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compound (starter/parent compound) whose structural backbone is judicially modified to yield 

structurally diverse novel molecules. According to Boehm et al. (2004), two compounds can be 

considered novel if their synthetic routines are distinct even if their structures have minor 

differences. Also, they can be granted different patents.  The benefits of scaffold hopping 

comprehend significant improvement in pharmacokinetic and pharmacodynamics properties, 

physicochemical properties such as solubility, modification of selectivities & affinities, and 

ultimately to generate novel patentable leads molecules (Böhm et al., 2004; Yang et al., 2018). 

Based on the degree of alterations of the starter molecule, Sun et al. (2012) classified scaffold 

hopping into four categories: 

2.9.1           Heterocycle replacement or 1〫Hop:  

Heterocyclic replacement involves minor modifications characterized by rearrangement or 

switching of carbon and nitrogen atoms or even other heteroatoms in a ring. Often yield 

compounds with a low degree of structural novelty. Figure 2.5 shows good examples of drugs 

designed through heterocycle replacement. We also see that 1〫hop has the most success stories 

among other hops.  

 

Figure 2. 5: Structures of antihistamine drugs as examples of 1〫Hop (a) pheniramine, (b) cyproheptadine, (c) 

pizotifen, (d) azatadine, (e) superposition of drugs (a) in magenta and (b) in green and (d) in magenta.  

2.9.2           Ring opening/closure 2〫Hop 

This type of scaffold-hopping can also be called bond formation and cleavage. Two common 

examples of ring closure are converting an alkyl chain to cyclohexane or piperidine. In figure 2.6, 
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the results of the ring closure yielded a bioactive conformation (Hall et al., 2008). Figure 2.7 

demonstrates an example of drugs derived through ring opening. 

  

 

Figure 2. 6: Prostaglandin EP1 receptor antagonists: (a) biaryl amine series and (b) indole series 

 

 

Figure 2. 7: Structures of pain-killing drugs: (a) morphine, (b) tramadol, and (c) 3D 

Tramadol (b), a less toxic drug, was designed by breaking six bonds and opening three bonds of a 

rigid and toxic morphine structure. 

2.9.3          Peptidomimetics 3〫Hop 

This involves the replacement of peptide backbones with non-peptic moieties. Assessment of 

metabolic stability is of paramount importance in drug development, although it is time-

consuming, laborious, and costly whether in-vivo or in-vitro (Ryu et al., 2022). The story of 

peptide-based drugs is, without a doubt, a daunting task due to their poor metabolic stability 

(Adessi & Soto, 2002). Metabolic stability can be improved by altering the ring size and chirality 

of the molecule structure and by supplementary structure cyclization (Gajula et al, 2021), of which 

the scaffold hopping technique can find suitable applications. 
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2.9.4           Topology/Shape-Based Scaffold Hopping 4〫Hop 

In this type of scaffold hopping, the whole structure of the scaffold is wholly altered but only 

interactions are preserved. Since it involves extensive modification of the structure, 

topology/shape-based scaffold hopping presents a tremendous opportunity to achieve the 

development of novel and patentable drug analogs if attained. However, literature has not yet 

recorded successful endeavors of new drugs developed through 4〫Hop. Table 2.4 is showing 

four classes of scaffold hopping and their corresponding tools.  

Table 2. 4: Classes of Scaffold hopping and examples of some tools used 

Class/Scaffold Hop Degree Software tools Used  

1〫Hop (Heterocycle replacement)  1. Mcule (https://mcule.com/apps/1-click-

scaffold-hop) 

2. MORPH (Beno & Langley, 2010) and  

3. Recore (Maass, 2007) 

2〫Hop (Bond formation/cleavage)  1. Spark 

(https://www.cressetgroup.com/software/spark), 

2. alvaBuilder 

(https://www.alvascience.com/alvaBuilder)  

3. CSD (Allen, 2002).   

3〫Hop (Peptidomimetics)  1. Recore (Maass, 2007)  

2. CAVEAT (Lauri, & Bartlett, 1994).   

3. Schrodinger http://www.schrodinger.com/ 

(accessed July 2022) 

4〫Hop (Topology/Shape-Based)  1. SHOP (Bergmann, 2009) 

2. Spark 

(https://www.cressetgroup.com/software/spark),  

3. ROCS (Rush, 2005)  

 

https://mcule.com/apps/1-click-scaffold-hop
https://mcule.com/apps/1-click-scaffold-hop
https://www.cressetgroup.com/software/spark
https://www.alvascience.com/alvaBuilder
https://www.cressetgroup.com/software/spark
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2.10          Synthesis of Triazine Amine derivative molecule via Amid Coupling 

The nitrogen-containing heterocyclic compounds called triazines have sparked great interest in 

medicinal chemistry research because of their promiscuity and incredibly good binding affinities. 

Triazine structure is characterized by a benzene ring substituted by three nitrogen atoms. The 

positions of these nitrogen atoms identify the triazines into three isomeric forms, which are a) 

1,2,3-triazine, b) 1,2,4-triazine, and c) 1,3,5-triazine. Compared to benzene, these isomers have 

much weaker resonance energy and resultantly favor nucleophilic over electrophilic substitution 

in their reactions (Kumar et al., 2018).   

Reminiscing on a plethora of recent research, triazines have proven potential bioactivity with a 

broad spectrum of pharmacological configurations in the character of anticancer (Cascioferro et 

al., 2017), anti-tuberculosis (Sunduru et al., 2010), anti-microbial (Kushwaha & Sharma, 2020), 

etc. In particular, 1,3,5-triazine moiety was labeled a versatile moiety; its scaffold exists in many 

clinically used drugs, for example, Cycloguanil, Dioxadet, Altretamine, etc. (Kumar et al., 2018). 

The 1,3,5-triazine isomer can be singled out from the rest of the isomers for its threefold symmetry, 

which aids in its flexibility to several modifications due to unsophisticated regiochemistry (Zhou 

et al., 2008). 

“Organic synthesis” is the action chemistry of compound-creation activity that mainly pay 

attention to biologically active small molecules (Schreiber, 2011). In organic synthesis, amide 

coupling accounts for 16 % of reactions in medicinal chemistry laboratories (Roughley & Jordan, 

2011), making it one of the most commonly used reactions. However, the requirement for greener 

approaches remains pertinent in synthetic organic chemistry. The top six small molecule drugs, 

the peptidic and all polyamides/ constitute amide-bond-containing drugs in the market (McGrath 

et al., 2010). Amide coupling requires coupling reagents, and the attributes of a suitable reagent 

must be considered, such as availability, cost, ease of removal from the matrix, safe, toxicity, etc. 

(Dunetz et al, 2016). In terms of coupling reagents, this section focused more on carbodiimides 

and boron reagents.  

The performance of every coupling reagent varies depending on the type of reactants (a carboxylic 

acid and an amine) and other conditions, also looking at factors such as selectivity, yield, 

epimerization, etc. (Dunetz et al., 2016). Formation of amide should be a straightforward 
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condensation reaction giving off the water as the waste, but this turns out to be very difficult 

because of the spontaneous formation of an ammonium salt unless in the presence of a catalyst or 

other coupling reagents (Valeur & Bradley, 2009; Lundberg et al., 2008; Al‐Zoubi et al., 2008). 

Incorrect stoichiometric proportions of coupling reagents, in situ preactivation of the carboxylic 

activation, is recommended (D'Amaral et al., 2021). Some of the coupling reagents often used are 

boron reagents, carbodiimides (e.g., DCC, DIC, and EDC), uronium/guanidinium reagents 

(HBTU), phosphonium salt reagents (BOP ((benzotriazole-1-yloxy)tris- 

(dimethylamino)phosphonium hexafluorophosphate), ethoxyacetylene and dynamite. A reaction 

similar to scheme one was used to prepare a commercial drug for cancer called efaproxiral. 

 

Figure 2. 8: Amide bonde formation by boron reagent. 

Using the conditions in scheme 1, the amide product can be produced after workup and purification 

with a yield of about 76% (Ramachandran & Hamann, 2021). 

The most popular reaction for the DCC-mediated coupling (Scheme 2) occurs at zero degrees (0

〫C). However, Storace et al. (2002) at Bristol-Myers Squibb had a distinct route. They 

successfully synthesized human leukocyte elastase inhibitors to treat cystic fibrosis and 

rheumatoid arthritis.  
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Figure 2. 9: DCC-Mediated synthesis of an amide bond 

The challenge with all DCC coupling is forming the by-product called dicyclohexyl urea, which 

persists and is very difficult to purge from the crude product matrix. However, Storace et al. (2002) 

removed dicyclohexyl urea by washing it with 2HCl, followed by filtration. Compared to other 

carbodiimides, another coupling agent EDC is the most commonly used carbodiimide because it 

renders the dicyclohexyl urea by-product water-soluble making it easy to purge, but it is costly. 

Therefore its use is limited (Dunetz et al, 2016).  

2.11          Justification of the Study  

Reminiscing on a plethora of recent research, triazines have proven potential bioactivity with a 

broad spectrum of pharmacological configurations in the character of anticancer (Cascioferro et 

al., 2017), anti-tuberculosis (Sunduru et al., 2010), anti-microbial (Kushwaha & Sharma, 2020), 

etc. In particular, 1,3,5-triazine moiety was labeled a versatile moiety. Its scaffold exists in many 

clinically used drugs, for example, Cycloguanil, Dioxadet, Altretamine, etc. (Kumar et al., 2018). 

The 1,3,5-triazine isomer can be singled out from the rest of the isomers for its threefold symmetry, 

which aids in its flexibility to several modifications due to unsophisticated regiochemistry (Zhou 

et al., 2008). Among several Mycobacterium tuberculosis potential drug targets, Dihydrofolate 

Reductase (DHFR), a key enzyme involved in folate metabolism, is an essential target in which its 

inhibition results in mycobacterial cell death. Several successful antifolates against infectious 

diseases exist, but none have been developed to combat tuberculosis. Previously, two potent anti-
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tuberculosis phenotypic hits belonging to the tetrahydro-1,3,5-triazine-2-amine (THT) family were 

predicted and confirmed as inhibitors of Mtb DHFR. Therefore, optimizing the confirmed hits 

would lead to a new class of anti-tuberculosis compounds that are target specific and highly potent.   

2.12      Objectives of the Study  

2.12.1       Main Objective 

 To design and synthesize tetrahydro-1,3,5-triazine-2-amine derivatives as potential 

inhibitors of Mtb-DHFR enzyme. 

2.12.2       Specific objectives  

1. To design through computational hit-to-lead optimization of two tetrahydro - 1, 3, 5-

triazine-2-amine derivatives using Mtb - DHFR target. 

2. To determine the potential anti-TB lead compounds (Mtb-DHFR inhibitors) from the 

generated compound library and prioritize them for synthesis through SBVS and 

ADMET analysis. 

3. Molecular Dynamics Simulation of tetrahydro - 1, 3, 5-triazine-2-amine derivatives lead 

compounds to validate Structure Based Virtual Screening (SBVS) results. 

4. Synthesis of tetrahydro - 1, 3, 5-triazine-2-amine derivatives lead compounds. 
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CHAPTER 3  

 

 MATERIALS AND METHODS 

3.1 Research Design 

This study embraced an amalgam of in-silico and synthetic chemistry in the Chinhoyi University’s 

computer and chemistry laboratory. Chief among the applied concepts in this study is the 

computational medicinal chemistry, pharmacology, bio and chemoinformatics, and all its in-Silico 

drug discovery tools. The schematic display of the study design is shown in figure 3.1.       

 

Figure 3. 1: Summary and workflow of the computational medicinal chemistry and organic synthetic chemistry 

concepts adopted for the design and synthesis of Mtb-DHFR inhibitor compounds.   
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3.2 Computational Designing of Compounds  

In order to satisfy the first objective, we implemented two main techniques which were structure 

activity relationship (SAR) and 1° & 2° scaffold-hopping. After that we implemented compound 

data curation of the resulted compound library that had been generated.  

3.2.1 Structure-Activity relationship (SAR)  

Structure-Activity Relationship is a concept in which drugs/ligands impart their biological activity 

through the chemical functionalities i.e. groups or atoms within their structures. From this 

principle, we employed ChemT (http://www.esa.ipb.pt/) (Abreu et al., 2011) software to generate 

a custom-made template-based chemical library at the heart of hit-lead optimization. ChemT 

requires a template molecule to be inputted for library build-up to launch and in this regard, it is 

ideal to use an approved TB drug such as isoniazid. THT1 and THT2 were used as starter 

molecules in the recommended SMILES format. These two potent hits belong to the tetrahydro-1, 

3, 5-triazine-2-amine (THT) family, and were predicted and confirmed as Mtb-DHFR inhibitors 

by Mugumbate et al. (2015). During the Structure-Activity relationship, we would have some 

functional groups of choice judiciously removed, added, or modified on selected designated R-

positions on the starter molecule.  This allowed for the identification of crucial substituted R-

positions plus functional groups that are essential to the imparted desired biological activity 

(Smeyne, 2020). The 3D crystal structures of DHFR which included PDB ID: 4KNE, 4KL9, and 

1DG8 were utilized in virtual screening using AutoDock Vina in PyRx. Next, an analysis of the 

virtual screening was performed with an eye to finding and correlating the binding interactions of 

the 3D structure of the ligands to their corresponding binding affinities.  

3.2.2 Scaffold-Hopping  

Scaffold-hopping was performed to generate a compound library with new chemistry and novel 

lead series with modified selectivity, improved efficacy, and the best possible affinities with 

respect to interactions of ligand-DHFR complexes. Again the active THT1 and THT2 were parent 

molecules in which their central core structures were modified into novel chemotypes. There are 

four major classes of Scaffold-hopping: 1. Heterocycle replacement (1˚hop), 2. Ring-opening, and 

closure (2˚hop), 3. Peptidomimetics (3˚hop), and 4. Topology-based hopping (4˚hop) (Sun et al., 

http://www.esa.ipb.pt/
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2012), depending on the degree of change associated with the parent molecule. We focused in this 

study on the first two types among the four categories which were 1˚hop scaffold-hopping, and 

ring-opening and closure also described by Sun et al. (2012), as 2˚hop. The criteria for choosing 

these two techniques was based on the successful stories associated with the two and the synthetic 

accessibility (ease of synthesis) of the compounds designed by these two methods. In the 2˚hop 

concept, the parent molecules were transformed into rigid structural analogs by ring closure or 

opening, either by converting an alkyl chain to cyclohexane, or piperidine (Evelyn et al., 2010), or 

through ring fusion. Ring closure can impart changes in flexibility by regulating the total number 

of rotatable bonds and subsequent activity of the resulting compound to a better degree of novelty 

as well as boosting absorption and membrane permeability (Vieth et al, 2004). The Mucko scaffold 

definition was also used to design novel compounds with the aid of computer tools by removing 

all the R-groups (substituents) while retaining the rings and the linker between the triazine moiety 

and the non-triazine moiety. After modifying the central core structure of the scaffold, some R-

groups/substituents were re-introduced to the entire novel compound to grow or enhance some 

desired physicochemical properties. During analysis, the trade-off between the structural novelty 

of the newly designed analog and the desired lead-like compound was always considered. The 

scaffold hopping technique sometimes requires chemical knowledge of starter molecules 

(Bajorath, 2017) so the parent molecules THT1 and THT2 were chosen on account of their 

confirmed bioactivity against MtbDHFR. The scaffolds of parent molecules typify a broad 

spectrum of structural relationships which can extend beyond chemically similar compounds to 

even structurally unrelated ones. Synthetic feasibility was also considered in this expedition since 

molecule design was done with an eye to creating lead or potential drugs that are synthesizable. 

Growing our library, a considerable number of molecules were designed and generated by ‘Spark’ 

UK; http://www.cresset-group.com/spark/; program software packages (Cheeseright et al., 2006), 

through R-group replacement or scaffold-hopping.  

3.2.3 Library Molecular Structure Curation  

The generated library especially most of the dataset created from ChemT, and a few others 

designed by Marvin Sketch were subjected to molecular structure curation and standardization 

since some were chemically or structurally wrong. Fortified with ten predefined checkers 
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alvaMolecule software (www.alvascience.com) version 1.0.4, 2020, could successfully inspect 

and identify erroneous structures and conjointly filter specific structural features. In addition, the 

alvaMolecule was used to perform verification on features such as multiple structures, unusual 

valence, and aromaticity while standardizing on chirality, isotopes, conversion of unusual covalent 

bonds to ionic bonds, and the addition of charges to quaternary nitrogen atoms (N).  

3.3 Structure-based Virtual Screening (SBVS) and ADMET analysis 

The second objective was achieved through SBVS by molecular docking of the library compounds 

against the Mtb-DHFR enzyme. Under this objective, ADMET studies were also carried out for 

the exploration of the drug-like properties for the whole compound library. During execution of 

this objective, we initiated activities such as, macromolecular/protein structure preparation, ligand 

preparation, validation of the docking protocol, and molecular docking against both Mtb-DHFR 

and human-DHFR for the purposes of selectivity studies. Under all these investigations, every 

compound’s attributes was bench marked against the chosen reference ligands INH and NSC-

339679 whose structure is in figure 3.2. 

3.4 Macromolecule Structure Preparation  

It was imperative to utilize more than one crystal structure in the interim of virtual screening to 

maximize the probability of prequalifying a better or potential drug candidate since only the 

compounds with desired attributes against all three crystal structures will be promoted to the next 

stage. Three crystal structures of Mtb-DHFR enzyme proteins of PDB IDs: 4KNE, 4KL9, and 

1DG8 with resolutions 2.0 Å, 1.39 Å and 2.0 Å respectively were retrieved from RCSB Protein 

Data Bank (PDB, www.rcsb.org). For selectivity studies against human DHFR, another protein 

receptor PDB ID: 1OHJ with a resolution of 2.5 Å was used. The receptors were imported into 

Biovia Discovery 2021 (https://3ds.com/products-services/biovia/products) where the attributes of 

their binding sites e.g. the grid dimensions, were identified before the elimination of ligand groups. 

Subsequently, the water molecules were removed followed by the removal of heteroatoms, and the 

deletion of other chains (where there was more than one) to remain with the main chain. All 

receptor proteins were saved in the PDB format. The receptors were then imported into AutoDock 

Tools 4.2 (Morris et al., 2009) to complete this successive target preparation by adding polar 

https://3ds.com/products-services/biovia/products#_ga=2.104429760.1797445559.1645442825-757969d0-511f-11ec-b107-1dd774bd1548
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hydrogens, computation of Gasterger and Kollman charges, and assigning AD4 Type before 

saving all receptor proteins/targets in pdbqt format.  

3.5 Preparation of Ligands  

All compounds in the library were converted to the SDF format preferred by PyRx. Energy 

minimization was performed in PyRx v 0.8 (http://pyrx.sourceforge.net.) (Dallakyan & Olson, 

2015)  initially using the universal force field (UFF) and subsequently using the Ghemical force 

field which was also responsible for geometry optimization (Hutchison et al, 2011). After the 

addition of polar hydrogens and charges, the ligands were converted to the pdbqt format with the 

help of the Open Babel toolkit in PyRx.  

3.6 Reference Ligands  

Hong et al. (2022), reported the discovery of a very potent novel inhibitor of MtbDHFR enzyme, 

NSC-339579 (1,3-diamino-7H-pyrrol[3,2-f]quanzoline (PQZ). The compound (figure 3.2) had a 

very good inhibitory activity possessing an IC50 of 6 nM in vitro against MtbDHFR. Therefore, 

this study employed NSC-339579 and isoniazid (INH) as reference ligands to serve as a blueprint 

for prequalification of potential candidate anti-TB compounds. We used isoniazid on the basis that 

it was an anti-TB approved drug, but we had no information that it target MtbDHFR, therefore we 

decided to include a known potent MtbDHFR inhibitor, NSC-339579.  Following Structure Based 

Virtual Screening (SBVS), all ligands which had the binding affinity similar or greater than that 

of NSC-339579 could be regarded as good and promising compounds and would be promoted to 

the next stage of the study.  

 

Figure 3. 2: Structure of NSC-339679 compound used as a reference ligand 
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3.7 Virtual Screening against Mtb-DHFR and h-DHFR  

The services of AutoDock vina in PyRx software were prescribed at this juncture to perform virtual 

screening of 1 700 compounds against Mtb-DHFR (PDB ID: 4KNE, PDB ID: 4KL9, and PDB ID: 

1DG8). Ultimately the compounds were subjected to filtration by Lipinski’s rule of five to a total 

of 520 ligands. To identify selectivity, the ligands with the best affinities and activities against 

Mtb-DHFR were pre-qualified (50 candidate ligands) and screened against the h-DHFR (PDB ID: 

1OHJ) receptor. Conversely, the task could determine those small molecules that favor inhibition 

of Mtb-DHFR contra to h-DHFR.  

3.8 Validation of the Docking Protocol   

We used the proteins PDBs of PDB ID: 4KNE, PDB ID: 4KL9, PDB ID: 1DG8, and PDB ID: 

1OHJ, and their corresponding cocrystallized ligands in the validation of the docking protocol. 

The co-crystallized ligands were removed from their binding pockets and re-docked on the same 

grid parameters. Following re-docking, regeneration of their original interactions and poses 

confirms the reliability of the docking protocol.  Ultimately superimposition of the extracted co-

crystallized ligands and the docked poses should confirm validation (figure 4.6). 

3.9 ADMET Studies  

The pre-qualified ligands (potential candidates) were subjected to ADMET analysis using 

alvaDesc software from alvascience. This is a very important in-silico predictive study, which 

could reduce the costs and time spent on in-vivo experiments. The software alvaDesc tools 

calculated physicochemical properties and molecular descriptors such as molecular weight (Mwt), 

two LogP models which are according to Moriguchi and Ghose-Chippen octanol-water partition 

coefficient, Log S or ESOL (Estimated Solubility) relating to the water solubility of a drug, 

Lipinski rule of five (RO5) for an orally administered drug in humans, Verber’s rule (Verber et 

al., 2002) of molecular bioavailability, and other indicatory lists of drug-like and lead-like alerts 

(Mauri, 2020). The parameter called the quantitative estimate of drug-likeness (QED) which is 

calculated by alvaDesc is of vital importance when selecting pre-qualified molecules in the early 

stage of drug discovery (Mauri, 2020). We also looked at other physicochemical properties such 
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as synthetic accessibility (SA), topological polar surface area using N and O atom polar 

contributions (TPSA N, O) for polarizability assessment, and Molar Refractivity (MRcons).  

Moreover, the research also considered chirality studies determining the number of chiral centers 

of the designed compounds using alvaDesc program, and other toxicity assessment aspects such 

as the blood-brain barrier (BBB) and gastrointestinal absorptivity using the BOILED EGG 

technique via the SwissADME web tool.  

3.10 Validation of the molecular docking results 

Objective three (3) sought to prove the validity and accuracy of the results obtained by molecular 

docking simulations.    

3.10.1 Molecular Dynamics Simulations  

Molecular Dynamics (MD) Simulations have been conducted through GROMACS 2022 software 

packages supported by NVIDIA GeForce GT 730 graphics card in Linux Ubuntu 22.10. Solvent 

molecular dynamics was executed to investigate molecular docking solutions further. The 

employed procedure for Molecular Dynamics (MD) Simulations has been recommended and 

practiced by many researchers including Keretsu, Bhujbal, & Cho (2020) research group. 

Four of the top 20 prequalified ligands from molecular docking simulations and ADMET studies 

have been selected for Molecular Dynamics (MD) simulations. The subject of classical MD 

Simulations was so that it would be possible to study and understand the dynamic binding effects 

on the structural stability and conformational flexibilities of the selected triazine derivative DHFR-

ligand complexes. The parameters of the ligands were set using the general amber force field 

(GAFF) (Wang et al., 2004) by the Acpype program (Da Silva & Vranken., 2012). The 

GROMACS CHARMM general force field (Vanommeslaeghe et al., 2010) and CHARMM36 

force-field (Huang & MacKerell, 2013), were used for the generation of both the Protein topology 

and coordinate files. The protein–ligand complex was contained in a dodecahedron and solvated 

with TIP3P water. The solvated system was neutralized by the addition of counter ions i.e. chloride 

ions, subsequent rapid energy minimization was performed to the steepest decent at 1000 steps 

with position restraint on DHFR – ligand complexes. Next the two-phase ensemble 50000 ps 

equilibration for a restrained constant number of particles, volume, and temperature (NVT) was 
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executed together with a constant number of particles, pressure, and temperature (NPT) ensemble 

for one ns equilibration respectively. Ultimately, unrestrained 50 ns production simulations were 

performed for the systems with the temperature maintained at 310 K and 1 bar. Post MD 50ns 

production run, we used system trajectory to carry out structural analysis in which the root mean 

square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), and 

hydrogen bonds analysis were determined. Plotting of individual graphs was performed in xmgrace 

(Turner, 2005), and also in Microsoft excel.   

3.11 Synthesis 

In the final objective (objective 4), two compounds from the prequalified ligand compounds were 

selected for synthesis based on their considerable drug-like properties and their synthetic 

accessibility (easy of synthesis).  

3.11.1 Synthesis of tetrahydro-1,3,5-triazine-2-amine derivatives  

This objective was carried out in the Chinhoyi University of Technology chemistry laboratory. 

Materials and reagents which include synthesis glassware, silica gel G TLC plates of 2 mm 

thickness, chemicals (synthesis chemical scaffolds), and solvents were bought from Aldrich and 

Enamine respectively.  Scheme 3 in figure 3.3 shows the general process used during synthesis. 

 

Figure 3. 3: DCC-Mediated Amide Coupling  
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3.11.2 Synthesis: DCC-Mediated Amide Coupling 

Dunetz et al. (2016) have reported this method (figure 4.16) using ethyl-acetate (EtOAc). At this 

juncture, we tried to apply this method, but, the choice of solvent was challenging in this objective 

because triazine scaffold (a) could not dissolve in many solvents except DMSO, which was also 

problematic in the later stage of this reaction because of its higher boiling point (189˚C).  

Several solvent combination mixtures were tried in order to find the best solvent or solvent mixture 

that could dissolve triazine scaffolds. Consequently, triazine scaffold (a) was discovered to be a 

sparingly soluble solvent 1:4 solvent mixture of ethyl acetate (EtOAc), while triazine scaffold (b) 

was completely soluble in the same solvent mixture. However, continued permutations of trials 

were discouraged by limited resources because only one gram (1g) of each chemical scaffold was 

purchased. As a result, DMSO and nBuOH - EtOAc mixture (1:4) was used.  

3.11.3 The general procedure for the carbodiimide coupling using DCC 

Figure 3.4 below is the illustration of the reaction mechanism. The prepared triazine amine (b) was 

added to a prepared carboxylic acid (benzoic acid) (a) in a 100ml round-bottomed flask containing 

40 ml DMSO as a solvent at 50˚C. The formation of an ammonium salt was anticipated. The 

progress of the reaction was monitored using silica gel G TLC plates of 2 mm thickness. After 

15min a solution of DCC was added to the reaction matrix, and the temperature was raised to the 

range of 75-80˚C during reflux. A sweet/fruit-smelling odor evolved and confirmed successful 

formation of an ester (shown in figure 4.10) which gave optimism for the successful progress of 

the reaction. After refluxing for 3h the solution was cooled at room temperature. Subsequently, 

2HCl was prepared in a 25ml volumetric flask, and 5 drops were added to the cooled reaction 

matrix followed by gravity filtration to purge the by-product dicyclohexyl urea (DCU) using fluted 

filter paper.  
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Figure 3. 4 Scheme for the DCC-Mediated Amide coupling reaction mechanism 

3.11.4 Reaction Workup  

At first, the crude product was washed with hexane in a separating funnel resulting in immediate 

separation into two distinct layers since hexane and DMSO are immiscible and have a wide gap in 

polarity and density. We avoided an aqueous workup because water and DMSO are miscible and 

polar solvents. Instead, DMSO and hexane were the chosen solvents during washing and 

extraction. The non-polar constituents would extract into hexane during constant shaking and 

venting leaving the polar (final product) in DMSO. The DMSO portion (bottom of the separatory 

funnel) was purged into a clean round bottom flask. Four (4) hour attempts to remove DMSO by 

concentrating in a rotary evaporator proved a futile exercise owing to the high boiling point of 

DMSO (189˚C) regardless of the high-temperature (120˚C) water bath. Alternatively, the DMSO 

extract was poured into a separatory funnel and washed with distilled water although DMSO and 
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water are miscible, polar, and both have high boiling points. This was a valid scientific application 

because most organic compounds do not dissolve in water. As a result, the organic compound 

formed a precipitate in water, and excess was added to make the solution more anti-organic to 

facilitate further precipitation. The precipitate was filtered off by gravity filtration using fluted 

filter paper. Following this aqueous workup, the purified product, a white solid amide, was dried. 

The reaction with DMSO as solvent was attempted several times (3 times) in an effort to form 

crystals until the realization that crystallization is difficult to form in DMSO (Wu et al., 2014), 

however, the needle-like shaped crystals eventually appeared in the Erlenmeyer flask after four 

days.  

A similar reaction was carried out in the n-BuOH - EtOAc solvent mixture (1:4) in which 0.1g of 

the triazine solid was reacted with 0.037g of benzoic acid in 0.1g DCC catalysts. The reaction 

mixture was refluxed for 3 hours and after 1 hour the sweet-smelling odor filled the laboratory for 

a period of about 30 minutes. After refluxing, the reaction vessel was cooled and 5 drops of 2M 

HCl were added, followed by gravity filtration using a fluted filter paper to remove the DCU 

unwanted-product. However, TLC analysis showed 2 spots confirming the possibility of the 

presence of DCU in our desired product. As a result, we carried out column chromatography 

whereby TLC analysis was performed on the collected six fractions. 
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CHAPTER 4  

 

RESULTS AND DISCUSSION 

4.1 Library Generation Results 

Rational drug discovery methods were instrumental in the generation of a library of compounds, 

2˚hop Scaffold hopping, and structure-activity relationship (SAR) were specifically used.   The 

application of these two techniques i.e. 2˚hop Scaffold hopping, and structure-activity relationship 

depended on two known 1,3,5-triazine based bioactive molecules, THT1 and THT2 previously 

predicted and confirmed as antituberculosis phenotypic hits. Table 4.1 presents the compounds 

that were designed using ChemT software. Data curation was implemented on the generated 

compounds datasets and subsequently, alarms were raised by the alvaMolecule software program 

on 37 eroneous chemical structures on the basis of aromaticity and unusual valence (Figure 4.1) 

37 erroneous structures detected by checkers in alvaMolecule software.  

 

Figure 4. 1: The illustration of typical erroneous issues resolved by molecular structure curation.   
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Table 4. 1: Structure-Activity Relationship studies  

# Name Analog Structure 

Receptor-Ligand Binding 

Energy (ΔG, Kcal/mol) 

4kne 4kl9 1dg8 

1 THT1 

Substituents 

R1 R2 R3 R4 

-H -H -H -H 

 

-7.8 -8.4 

 

-8.5 

 

2 BTHT1 

Substituents 

R1 R2 R3 R4 

-H -H -CH3 -H 

 

-7.7 -8.4 

 

-8.8 

 

3 CTHT1 

Substituents 

R1 R2 R3 R4 

-H -CH3 -CH3 -H 

-8.4 -9.0 

 

-8.8 
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4 DTHT1 

Substituents 

R1 R2 R3 R4 

-CH3 -CH3 -CH3 -H 

 

-8.3 -9.2 

 

-9.1 

 

  

Structure-activity relationship studies were conducted to identify analogs with higher binding 

affinities i.e. lower binding energies for the DHFR receptor. This concept of the Structure-Activity 

Relationship was able to promptly establish positions on THT1 and THT2 structures where 

judicious structural modifications can translate to changes in various properties such as in 

particular binding affinity. As compared to electron-donating groups the electron-withdrawing 

groups such as –COCH3 substituents located on phenyl rings are known to be proficiently 

contributing to antibacterial and or antimicrobial activity (Yadav & Ganguly, 2015).  

Results in figure 4.1 showed that introducing a –COCH3 group on compound FTHT1 significantly 

improved binding energy. The electronegative oxygen atom in a –COCH3 was involved in two 

convectional hydrogen bonds with GLY A: 18 and ASP A: 19. The triazine moiety was also 

involved in four hydrogen bond interactions, i.e. two H-bonds between ASP A:27 with the –NH 

on the para and meta position, and the other two on ILE A:5 and ILE A:94. It was also observed 

that the substitution of a –CH3 functional group on the meta position of BTHT1 had adverse effects 

https://www.sciencedirect.com/topics/chemistry/kd
https://www.sciencedirect.com/topics/chemistry/kd
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in terms of binding energy for both 4kne and 4kl9 where a decline in binding affinity was 

prominent. This, therefore, means that substitution for –CH3 on that ring position should be 

disregarded because electron-donating groups are associated with poor inhibition and poor 

activity. In their study, Yadav & Ganguly (2015) postulated that electron-withdrawing groups 

might be involved in lowering MIC values. Based on the similarity property principle, we can 

consider the similarity of two compounds based on their shape and ability to form the same 

interactions (Silakari & Singh, 2021). Using the same principle on compounds THT1 and BTHT1, 

substituting only one –CH3 group led to a complete change in conformation and formed no 

common interactions in the process.  

 

Figure 4. 2: 4kne-BTHT1 interactions with amino acids of the binding pocket. (a) 3D- interactions (b) 3D surface 

representation, ligand (purple), polar interactions (ILE: 14 & SER: 49), polar contacts (red), non-polar contacts (light 

green), 

It was observed that generally, there was complete independence between chemical structure and 

the corresponding receptor-ligand interactions. At the end of our structure-activity relationship 

studies, we realized that many compound structures in the library had to violate the Lipinski rule 

of five to acquire a considerable boost in binding energies. This was observed in compounds 

OTHT2, PTHT2, QTHT2, and RTHT2 (Table 4.1) that had molecular weight greater than 500.   
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4.2 Compounds designed by Scaffold Hopping  

Using 1˚ and 2˚ scaffold hopping concepts (Sun et al., 2012), we generated compounds that 

constituted 1587 of the 1700 library capacity. We initiated 1˚hop presented in figure 4.3 which is 

characterized by minor modifications i.e., swapping of carbon atoms with nitrogen atoms on the 

aromatic ring or replacement with other heteroatoms, in particular oxygen atom(s).  

 

Figure 4. 3: 1˚ target-based Scaffold Hopping technique using THT1 and THT2 as the starter molecules, 2D/3D 

similarities of the starter molecules to the product molecules, and virtual screening of the daughter analogs to 

determine the binding energies imparted by alterations on each scaffold. The displayed ΔG-value represents the 

average docking score obtained against Mtb-DHFR macromolecular receptors PDB ID: 4kne, 4kl9, & 1dg8.  
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The variations in similarities in terms of 2D & 3D structural forms of all ligands to their 

parent/starter molecules suggest that there are some catalytic features in 3D terrain that a molecule 

cannot possess or show in 2D form. This observation was in agreement with the study by Gohlke 

et al. (2015) in which they reflected the presence of some untraceable similarities in the 3D 

landscape but can be absent or difficult to detect in 2D similarity comparisons. A small dataset of 

19 compound analogs in figure 4.3 is the product of 1˚ scaffold hopping. The assigned values of 

changes in Gibbs free energies (ΔG (Kcal/mol)) are the average binding energies yielded by 

subsequent molecular docking during virtual screening against reportedly chosen three crystal 

structures of the Mtb-DHFR enzyme target. The most significant docking score from the entire 

dataset was found to be -8.5 kcal/mol held by compound 2THT1. Regarding similarity, 2THT1 

was similar to its parent molecule THT1 in 3D (0.922367) compared to its 2D Tanimoto similarity 

(0.729107). Judging on the similarity scores and docking scores from figure 4.3, the greater the 

similarity, the greater the binding energy, hence biological activity. We can deduce that the activity 

landscape was linear to the compound similarity, especially in 2D. Relevant examples include 

compounds 3THT2, 2THT1, and 9THT2, etc. 

Similarly on the other hand, compounds that were dissimilar to their parent molecules in either 2D 

or 3D showed poor activity to Mtb-DHFR i.e., low binding energies.  In this judicious task of 

scaffold hopping, we were not much concerned about the activity of an individual scaffold. Still, 

meticulous attention was paid to the change in biological activity imparted by the entire compound. 

During virtual screening with three different macromolecular crystal structures, it was 

imperatively observed that the DHFR enzyme protein could handle and feasibly interact with 

structurally diverse molecules.  

4.2.1 Two Degree (2˚) Scaffold-Hopping  

To minimize and curtail the deficiencies of heterocycle replacement i.e., 1˚Scaffold-Hopping in 

figure 4.3, we implemented 2˚scaffold-hopping, a technique characterized by extensive ring 

closure and opening on the non-triazine moiety. Figure 4.4 shows examples of molecules generated 

by ring closure and opening from across the least to the top-predicted chemotypes.  
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Figure 4. 4: Two degree, 2˚Scaffold-Hopping product molecules, 2D and 3D Similarities (dark green=starter molecule, 

pink = product molecule), and Virtual Screening of 1-3-5-Triazine derivative molecules. 

From molecule AS05 to AM22, we used THT1 & THT2 as starter molecules to compare the 2D 

& 3D of the generated compounds. For the rest of the compounds in figure 4.4, compound ANS02 

was employed as the starter molecule to replace THT1 and THT2 because of its simple structure 

and good binding affinity, to generate and fetch better compounds as the study journey through 

the 2˚ scaffold hopping expedition. Resultantly, after ANS02 was introduced as the starter 

molecule, the library gained vast of new compounds with improved binding affinities (figure 4.4). 

These new molecules were in the range between -10.3 kcal mol-1 to -14.1 kcal mol-1 in terms of 

average binding energies after virtual screening against PDB ID: 4kne, 4kl9, and 1dg8 of the 

MtbDHFR enzyme. Ring-opening and closure were employed as facets and features of the 2˚ 

scaffold hopping (see figure 4.4). The observation was that ring-opening led to a loss in binding 

affinity or reduction in binding energies regardless of the starter molecule used. Examples of such 



47 
 

phenomena are on compound AS05 (ΔG = -7.13 kcal mol-1), AM31 (ΔG = -8.2 kcal mol-1), and 

ANS11 (ΔG = -8.5kcal mol-1), which had the lowest binding affinities among all compounds.  

Based on observations in figure 4.4, we acknowledged a possibility of structural dissimilarity 

among molecules in terms of their 2D when they are so similar with regards to their 3D. Therefore 

it was discernible that the 3D form of a molecule offers a striking unique blueprint for determining 

structural similarity among molecules.  

Below is figure 4.5 which shows the optimum superimposition of structural protein receptors used 

in virtual screening. In this aspect, we sought to determine structural similarity among these three 

macromolecules, and this similarity is significant because it is often correlated with evolutionary 

relatedness.    

 

Figure 4. 5: Superimposition/Sequence alignment of (a) PDB ID: 4kne and 4kl9, (b) PDB ID: 4kne and 1dg8, (c) PDB 

ID: 4kl9 and 1dg8, PDB ID 4kne (blue), PDB ID 4kl9 (cyan), PDB ID 1dg8 (yellow). 

The above structural alignment between 4KNE and 4KL9 has a C (alpha) RMSD of 1.237Å over 

159 aligned residues with 100% sequence identity. The above structural alignment between 4KNE 

and 1DG8 has a C (alpha) RMSD of 1.111Å over 159 aligned residues with 100% sequence 

identity. The above structural alignment between 1DG8 and 4KL9 has a C (alpha) RMSD of 0,620 

Å over 159 aligned residues with 100% sequence identity. For good efficiency, RMSD values 

should be at most < 2 Å (Silakari & Singh, 2021).  

Table 4. 2: RMSD Calculation of all aligned receptor molecules against each other 
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Receptor molecules Reference Main-chain 

4kl9 4kne 1.237 

1dg8 4kne 1.111 

1dg8 4kl9 0.620 

  

4.3 Validation of the docking protocol  

In this section, we initially re-generated the co-crystalized ligands from their respective 

macromolecules and re-docked them in their original active sites to validate the docking protocol 

(figure 4.6). 

 

Figure 4. 6: Co-crystalized ligands (green) superimposed with predicted ligands (yellow), presented for validation of 

the docking protocol [a). 4kne in complex with cycloguanil, b). 4kl9 in complex with NADPH, c). 1dg8 complexed 

with NADPH d). 1ohj complexed with PT523]. 

We substantiated the robustness of the docking protocol by matching and correlating the co-

crystallized cycloguanil of the Mtb-DHFR (PDB ID: 4KNE), NADPH (dihydro-nicotinamide-

adenine-dinucleotide phosphate) of PDB ID: 4KL9 & PDB ID: 1DG8 of the Mtb-DHFR, and N-
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(4-Carboxy-4-{3,5-dichloro-4-[(2,4-diamino-pteridin-6-ylmethyl)-amino]-benzoylamino}-

butyl)-phthalamic acid (ligand 2) of human-DHFR (PDB ID: 1OHJ) with their docked equivalents. 

Eventually, all their subsequent RMSD values were calculated over all atoms. The reported RMSD 

value that can validate a docking protocol's success is < 2Å (Taha et al, 2011), which aligns or 

agrees with the results in figure 4.6. Following this exercise, the RMSD for all used 

macromolecular PDB IDs was 0.4007Å < RMSD < 1.1095Å, meaning that the docking protocol 

worked successfully.   

4.4 In-silico ADMET Studies 

In this section, we investigated the drug-likeness of the 23 compounds with good docking scores 

(Table 4.3). With the aid of alvaDesc software, four molecular descriptors were chosen to 

investigate the physicochemical properties of the compounds and these were: constitutional 

indices, functional group counts, molecular properties, and drug-like indices. On constitutional 

indices, the study focused on molecular weight (Mwt). Only four compounds had molecular weight 

above 500 and compound RM11 had the highest Mwt of 525.61. The hydrogen bond donor and 

acceptors calculated under functional group counts were found to obey the Lipsnki rule of 5 

perfectly across all selected compounds.   

Table 4. 3: 1-3-5-triazine-2-amine derivative compounds along with their Lipinski rule, drug-like score consensus 

(DLScons), synthetic accessibility (SAscore), Quantitative Estimate of Drug-Likeness (QED), Aqueous Solubility, 

Cytochrome 450 inhibition prediction of 5 isoforms (1a2, 2c9, 2c19, 2d6, and 3a4), and binding affinity against DHFR 

enzyme receptors PDB ID: 4kne, 4kl9 and 1dg8. 

Name 
Lipinski Rule of 

Five 

Cytochrome P450 

(CYP450) Inhibition 
Aqueou

s 

Solubili

ty (Log 

S) 

Syntheti

c 

Accessi

bility 

(SA 

score) 

Quantita

tive 

Estimate 

of Drug-

Likeness 

(QED) 

Binding Affinities 

(kcal mol-1) ΔG 

Binding 

  
Isoforms 

1a2 
2c

9 

2c1

9 

2d

6 

3a

4 
4kne 4kl9 1dg8 

AS05 

Molecul

ar 

Weight 

299.4

8 
No No No No No -2.372 4.4229 0.3923 -7.19  -7.2  -7.0 



50 
 

(<500D

a) 

Log 

P(<5) 

2.047

8 

H-Bond 

donor 

(5) 

4 

H-bond 

accepto

r (<10) 

7 

Violatio

ns 
0 

Drug-

Like 

Score 

(DLSco

ns) 

0.976

1 

AS12

2 

Molecul

ar 

Weight 

(<500D

a) 

411.4

6 

No 
Ye

s 
Yes No 

Ye

s 
-5.7443 5.3332 0.3975 -10.3 -11.3 

-

12.7 

Log 

P(<5) 

4.888

5 

H-Bond 

donor 

(5) 

3 

H-bond 

accepto

r (<10) 

10 
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Violatio

ns 
0 

Drug-

Like 

Score 

(DLSco

ns) 

0.778

5 

RM1

1 

Molecul

ar 

Weight 

(<500D

a) 

525.6

1 

No No No No No -7.4482 5.4330 0.3371 -12.5 -13.1 
-

13.0 

Log 

P(<5) 

4.351

4 

H-Bond 

donor 

(5) 

3 

H-bond 

accepto

r (<10) 

10 

Violatio

ns 
1 

Drug-

Like 

Score 

(DLSco

ns) 

0.633

3 

RM1

5 

Molecul

ar 

Weight 

525.6

1 

No No No No 
Ye

s 
-7.4061 5.5361 0.4153 -12.0 -11.8 

-

14.1 
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(<500D

a) 

Log 

P(<5) 

5.124

6 

H-Bond 

donor 

(5) 

3 

H-bond 

accepto

r (<10) 

10 

Violatio

ns 
2 

Drug-

Like 

Score 

(DLSco

ns) 

0.633

3 

RF43 

Molecul

ar 

Weight 

(<500D

a) 

493.5

9 

No 
Ye

s 
Yes No 

Ye

s 
-7.2911 5.2639 0.4239 -11.0 -12.1 

-

13.1 

Log 

P(<5) 

5.287

5 

H-Bond 

donor 

(5) 

3 

H-bond 

accepto

r (<10) 

9 
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Violatio

ns 
1 

Drug-

Like 

Score 

(DLSco

ns) 

0.702

3 

 

Under molecular properties, although alvaDesc inclusively calculated on three octanol-water 

partition coefficients (log P) models, the study concentrated much on the log P consensus (Log 

Pcons). Table 4.3 indicates that only RF02, RF15, and RF43 had log P values exceeding the 

optimal value of 5. All the compounds achieved better synthetic accessibility scores (i.e. SAscore 

≤ 6), indicating that all selected compounds can be easily synthesizable. Looking at the calculated 

drug-like indices across all molecules, the Lipinski rule of five was evaluated to be obeyed 

satisfactorily because not more than 3 of its molecular descriptors were violated. Also calculated 

was the drug-likeness score consensus (DLScons) which evaluates the potential bioavailability of 

the chosen molecules. On this parameter high scores were prevalent among all compounds, best 

scores were achieved on compounds AM34 and AS05 with DLScons values of 0.9761 and 0.9285, 

respectively. 

On the other hand, molecules AM22 (appendix 2) and AM34 attained perfect DLS values of 1, 

indicating that they are potentially suitable Mtb-DHFR inhibitors. All compounds possess good 

aqueous solubility (LogS) suggesting good pharmacological action powered by sufficient blood 

concentration. The other parameter is called the quantitative estimate of drug-likeness (QED) 

which is calculated based on the concept of desirability (Bickerton et al, 2012). A QED score 

greater than 0.3 indicates that a molecule has better drug-like properties, discerning that most 

compounds in table 4.3 had a considerable QED scores. In its computation QED incorporates the 

information derived from FDA-approved drugs. Therefore, it expresses and validates the ADME 

properties (Kosugi & Ohue 2021). Lastly, the calculated binding energy values saw compounds 

RF02, RM11, and RM15 emerging as the most significant drug candidates due to their highest 

docking scores. All compounds in table 4.3 possess considerable binding affinities proving 
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inhibitory against Mtb-DHFR hence anti-TB drugs. However, despite having the perfect DLS 

value, molecule AS05 had the lowest binding energy which is even lower than that of THT1 and 

THT2 the starter molecules of this study. 

Also incorporated within table 4.3 are the results for metabolism properties displaying the 

inhibition capabilities of compounds to cytochrome P450 (CYP450) isoforms 1a2, 2ac9, 2c19, 

2d6, and 3a4. Generally, many compounds show no inhibition. However, a few compounds proved 

to inhibit not all but some CYP450 isoforms. This investigation was of tremendous importance in 

predicting the possibilities of drug-drug interaction due to CYP450 enzyme inhibition (Montanha 

et al, 2022; Uehara et al., 2020), therefore, for all the compounds that could not inhibit CYP450 

isoforms infers low risk of the drug-drug interaction phenomena. Failure of the compounds to 

inhibit the mentioned CYP450 enzymes means the CYP450 enzymes will be able to perform their 

drug metabolism action for excretion since the drug molecule should not stay in the body after it 

has performed its intended purpose.     

4.4.1 Computational Quantitative Characterization of Physicochemical Properties     

An In-silico quantitative characterization in reliance on calculated physicochemical property 

profiles such as molecular weight (MW), number of rotatable bonds (RBN), H-bond donors and 

acceptors (nHDon and nHAcc), Chirality (chiral centers), molar refractivity consensus (MRcons), 

Topology polar surface area (TPSA) and synthetic accessibility (SAscore) was accomplished in 

this section (Table 4.4). 

Table 4. 4: Univariate statistical analysis of In-silico predicted physicochemical properties of selected 16 compounds 

Molecular 

Descriptor 

Average Std. Deviation Maximum Minimum 

Molecular 

Weight (MW) 
413.326 114.36435 525.610 137.160 

TPSA(NO) 107.454 33.39606 209.320 68.010 

RBN 4.313 2.44182 10 1 
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nHDon 3.125 1.09364 7 1 

nHAcc 5.188 1.19754 10 4 

SAscore 4.799 0.78191 5.686 3.023 

Estimated 

Solubility 

(ESOL) 

-4.968 2.13027 -0.683 -7.448 

Molar 

Refractivity 

consensus 

(MRcons) 

114.107 32.37337 148.196 35.891 

Chiral Center 0.875 0.88506 3.000 0.000 

Note: Molecular weight MW, Topological polar surface area using N, O polar contributions TPSA(N,O)  

, Estimated solubility ESOL, Number of rotatable bonds RBN, Number of hydrogen bond donors, nHDon, 

Number of hydrogen bond acceptors nHAcc, Molar Refractivity Consensus MRcons, Synthetic 

accessibility score, SAscore, and Chiral centers. 

 

ADMET studies remain indispensable in evaluating the most suitable route of administration for 

the drugs. Figure 4.7 displays four physicochemical properties such as molecular weight, Log P, 

number of hydrogen bond donors, and number of hydrogen bond acceptors, that are considered for 

the determination of the Lipinski rule of five (Ro5).  
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Figure 4. 7: Assessment of the Lipinski rule of five, (a) Molecular weight (MW), (b) LOGP (consensus), (c) number 

of hydrogen bond donors (nHDon), (d) number of hydrogen bond acceptors (nHAcc). 

 

As shown in figure 4.7, it was observed from that compounds that had a log P greater than the 

commended (five) were found in the acceptable range with regard to other physicochemical 

properties like, MW, nHDon, and nHAcc. Similarly, GM10 had 7 nHDon and 14 nHAcc but fell 

in range in relation to MW and LOGP. Furthermore, the compounds did not violate at least three 

physicochemical properties indicating that they obeyed the Lipinski rule of five. Therefore the 

compounds suggested significant drug-like properties and can be considered better candidates for 

further studies.    

Figure 4.8 summarizes the distribution of physicochemical properties in relation to Verber’s rule, 

and other crucial drug-like properties such as chirality, molar refractivity MRcons, estimated 

solubility and synthetic accessibility SAscore.   
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Figure 4. 8: Computational quantitative characterization of compounds’ physicochemical properties, (a) Chiral 

centers, Molar refractivity consensus (MRcons), Topological polar surface are using N and O polar contributions, (d) 

number of rotatable bonds (RBN), (e)Synthetic accessibility score (SAscore) and (f) Estimated solubility (ESOL). 

Topological Polar Surface Area (TPSA): All the designed 1,3,5-triazine derivative molecules in 

Figure 4.8 (c) were observed to fall within the permissible range i.e. TPSA ≤ 140 Å2, except for 

GM10 with a value of 203.8 Å2. The compounds’ TPSA had an average of 107.45 with a standard 

deviation of 33.39. This implies that compound GM10 can potentially pose gastrointestinal 

absorption problems.  

Verber’s Rule: Verber et al. (2002) proposed the following for a drug with good bioavailability 

and these include ≤ 10 rotatable bonds (RBN), ≤ 12 H-bond donors plus acceptors in total (i.e. 

nHDon + nHAcc ≤ 12), and topological polar surface area (TPSA) ≤ 140 Å2. The compounds’ 
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maximum RBN as in figure 4.8 (d) was 10 with an average of 4.31 and a standard deviation of 

2.44. The nHDon displayed in figure 4.7 (c) for all compounds was 4.12 on average with a standard 

deviation of 2.09, nHAcc (figure 4.7 (d) 9.18 on average, and a standard deviation of 2.19. If more 

than three of these are violated then the drug molecule is rejected for the next stage of studies in 

the drug discovery pipeline. Nonetheless, all the selected 16 compounds were found within the 

acceptable range obeying Verber’s rule. The Verber’s rule excludes molecular weight MW.  

Molar refractivity (MR): In this study, it was observed that the majority of the compounds fell 

within the MR qualifying range which is between 40 and 130, (figure 4.8 (b)) and the mean molar 

refractivity was 114.11 with a standard deviation of 32.37. According to Ghose et al. (1999) 

compounds with such an MR range are considered drug-like as they have good drug polarizability. 

Synthetic accessibility (SAscore): We considered the ease of synthesis of which all compounds 

were predictively falling within the acceptable qualifying range of SAscore ≤ 6. This suggests that 

it is possible for all these compounds to be synthesized in the laboratory.   

Chirality: In terms of chirality, compounds AZ04, INH, TB1, TH1, and THT2 (figure 4.8 (a)) were 

observed with no chiral center which implies that the compounds were free of toxicity problems 

arising from stereoselectivity or enantiopurity issues that exist when a molecule is chiral. While 

the rest of are asymmetrical and chiral, compound GM10 had the highest number of chiral centers 

3, followed by RF02 and RM10 with 2 chiral centers, and the rest of the compounds had only 1 

chiral center. According to the US FDA guidelines, chirality determination is very crucial and 

should be addressed early like at this stage of drug discovery and development. The more the 

number of chiral centers in a compound the more the number of enantiomers from a single 

compound. This, therefore, means for the most optically active GM10 compound, ADMET studies 

must be meticulously executed to determine the biological activity and adverse effects associated 

with each possible isomer. However, the chirality of a compound structure could confer target (in 

this case MtbDHFR) binding specificity and selectivity and infer scaffold novelty (Brooks et al., 

2011; Pelay‐Gimeno et al., 2015). Furthermore, pelay-Gimeno et al. (2015) highlighted that 

chirality can enhance biological activity underlining that chiral scaffolds may confer high 

mycobacterial or inhibitory effects.   

4.4.2 Brain or Intestinal Estimated (BOILED EGG) 
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We analyzed other drug-likeness properties of some selected designed compounds using 

SwissADME (www.swissadme.ch) web tool from the Swiss institute of Bioinformatics (SIB Swiss 

Institute of Bioinformatics Members, 2016; Daina & Zoete, 2016).  The server display a molecular 

sketcher on the left-hand side and the ChemoAxon’s Marvin JS window on the right hand side 

where a data set of selected 16 compounds was inserted in SMILE (simplified molecular input line 

entry system) format. A graph called an egg plot (figure 4.9) was plotted showing the TPSA (the 

surface sum over all polar atoms or molecules) on the x-axis against WLOGP (lipophilicity of the 

drug) on the y-axis (Daina et al., 2017). The characteristics property of a molecule to cross or 

penetrate through the blood-brain barrier (BBB) is denoted by the yellow party of an egg i.e. egg 

yolk. Alternatively, the properties of molecules with a better chance of favoring passive absorption 

by the gastrointestinal tract (GIT) are represented by the white portion of the egg. Also, the 

molecules that had a higher probability of getting effluxed from the central nervous system (CNS) 

by P-glycoprotein (P-gp; PGP+), are colored blue dots, while the red dots represent molecules that 

are predictively non-substrates of P-gp (PGP−). 

 

Figure 4. 9: Predicted boiled egg representation of the selected designed 1,3,5-triazine based derivatives using the 

Swiss ADME web tool. 

http://www.swissadme.ch/
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As on figure 4.9, none of the molecules were found occupying the Boiled Egg’s yolk meaning that 

all molecules cannot passively permeate through the blood–brain barrier (BBB) therefore 

protecting the brain from unwanted or harmful substances if the Mycobacterium tuberculosis is 

not in the brain. Concurrently, 15 molecules were located within the Boiled Egg’s white area which 

is an indication that they were predicted to be passively absorbed by the gastrointestinal tract. 

However, only molecule 2 (ANS02) was found slightly out of the range because of its WLOGP 

which was -1.53 thus violating one of the Ghose et al. (1999) rules which require molecules in 

range -0.4 ≤ WLOGP ≤ 5.6 to be considered drug-like, however, ANS02 satisfied on other 

molecular descriptors.  The 14 molecules in green dots inferred that they can be potentially eluted 

from the central nervous system (CNS) by P-glycoprotein, and conversely, only three molecules, 

AZ04, INH, and TB1 represented in red dots were predictively non-substrates of P-gp (PGP−) 

hence they cannot be eluted from the central nervous system (CNS) by P-glycoprotein. 

 The study proceeded to look at the ADME and toxicity of the drug candidate molecules in Table 

4.5. 

 All compounds in table 4.5 exhibited excellent gastrointestinal absorption, and good examples 

include compounds RM11, RF56, and RF28, etc., scoring 98.613, 97,342, and 95,656 respectively; 

overall, RF56 stood right on the podium with a perfect score of 100%. The beauty of these best 

scores lies in their compounds' excellent intestinal absorption capacity, which in turn results in 

adequate oral bioavailability (Othman et al., 2021).  

Table 4. 5: ADME properties and Toxicity predictions among selected 24 compounds 

Compound 
Ames 

Toxicity 

Max. 

Tolerated 

dose 

(Human) 

Log 

(mg/kg/day) 

hERG 

1  

Oral Rate 

Acute 

Toxicity 

(LD50) 

Oral Rate 

Chronic 

Toxicity 

(LOAEL) 

Verhaar 

Daphnia 

base-line 

toxicity 

from 

MLOGP 

(mmol/l) 

Intestinal 

Absorption 

AS05 Yes 0.206 No 2.395 1.339 -3.7659 66.998 

AM03 No 0.149 No 2.494 3.159 -4.6336 80.785 

https://www.sciencedirect.com/science/article/pii/S1319562X21010494#b0200
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It is shown in table 4.5 that five compounds have positive Ames toxicity implying that they can be 

potentially mutagenic. Contrarily, the rest of the compounds tested negative for Ames denoting 

AM10 No 0.061 No 2.549 2.1 -4.8498 92.693 

AM22 No -0.006 No 2.334 0.986 -3.0664 73.988 

AM26 No 0.01 No 2.374 0.712 -5.3491 95.162 

AM31 No 0.034 No 2.421 0.999 -3.8143 91.118 

AM34 Yes 0.097 No 2.519 1.931 -3.556 92.527 

AM36 No 0.313 No 2.21 1.718 -4.6311 66.425 

ANS01 No 0.075 No 2.557 0.862 -5.8378 66.322 

ANS02 No 0.059 No 2.575 0.665 -5.2608 67.856 

ANS04 No 0.524 No 2.937 2.944 -5.9097 75.377 

ANS11 No 0.168 No 2.535 0.958 -5.9645 70.68 

AS122 No 0.147 No 3.016 2.127 -6.6429 94.827 

AS01 No 0.084 No 2.412 1.95 -6.0635 77.292 

RM11 No 0.36 No 3.022 3.246 -8.5076 98.613 

RM15 No 0.209 No 2.739 2.041 -8.5076 95.341 

RF02 No 0.355 No 3.002 0.76 -7.8463 92.034 

RF18 No 0.294 No 3.185 3.453 -7.8258 95.916 

RF20 No 0.311 No 3.195 2.984 -7.027 83.287 

RF28 Yes 0.283 No 3.022 1.747 -8.0053 95.656 

RF42 No 0.178 No 2.962 2.208 -6.9572 91.786 

RF43 No 0.311 No 3.195 2.984 -7.8463 83.287 

RF48 Yes 0.013 No 3.027 3.53 -7.1442 100 

RF56 Yes 0.282 No 3.01 1.297 -7.7653 97.342 

THT1 Yes 0.108 No 2.467 2.713 -4.3125 74.74 

THT2 Yes  0.038 No 2.489 2.6828 -3.8557 73.372 

Isoniazid  Yes  0.282 No 2.364 2.824 -1.0512 75.651 
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that they are less likely to be toxic in terms of mutagenicity. The lower the LD50 score of a 

compound the more lethal the compound.  Juxtaposing the compound toxicity profile in terms of 

the oral rate acute toxicity (LD50 doses) of all the compounds ranging from 2.21 - 3.195 mol kg-

1, all molecules had LD50 scores greater than that of isoniazid (2.364) the reference except 

compound AM22 AND AM36. This assessment deduces that most of the newly designed 

compounds in the constructed database are less toxic and are highly potential TB-Drug candidates.    

4.5 Analysis of interactions between 1,3,5-triazine-derivative ligands and Mtb-DHFR 

receptor 

Through virtual screening using AutoDock Vina, we searched every nook and cranny of the newly 

designed compounds library to find molecules with optimized interactions in parallel with better 

binding energies. Ten (10) Molecules with high docking scores, good drug-like scores, and 

optimum interactions were shortlisted for synthesis and further studies. The binding energies 

across all 1700 molecules ranged from -6.3 to -14.1 kcal mol-1. The binding affinities to the 

macromolecules were in the order 4kne < 4kl9 < 1dg8 meaning in general, that molecules 

demonstrated the highest affinity for DHFR receptor PDB ID: 1DG8 1.   However the anomalies 

were found for which the example was molecule RM11 which peculiarly had higher affinity for 

the PDB ID: 4KL9 than any other receptor present.  Since the library contained hundreds of small 

molecules with best but similar binding affinities, ADMET, and drug-like molecules, we randomly 

selected among the best, ten compounds which are displayed in table 4.6.  

Table 4. 6: 2D -Structures, molecular formula, amino acid residues per each macromolecule, common amino acid 

residue interacting across all receptors, and binding affinities conjoined to three docked macromolecules (4kne, 4kl9, 

1dg8), of 10 pre-qualified ligands.  

Nam

e 

Structure 

 

 

 

Molecular 

Formula 

Amino Acid Residues 

 

PDB IDs 
 

Common 

Residues 

Interacting 

across all 

receptors 

Binding 

Affinities 

 

PDB IDs 
 

4kne 4kl9 1dg8 4kn

e 

4kl

9 

1dg

8 



63 
 

ANS

01 

 

C28H24FN7O ALA:7 

ILE:14 

ILE:94 

LEU:57 

PHE:31 

TYR:1

00 

ASP:27 

GLN:2

8 

HIS:30 

ILE:5 

ILE:14 

ILE20 

TRP:6 

ALA:7 

ILE:14 

ILE:94 

LEU:57 

PHE:31 

THR:4

6 

ILE:14 

-9.8 

-

11.

1 

-

12.4 

RM1

1 

 

C29H25F2N7O ASP:27 

GLN:2

8 

GLY:9

6 

GLY:9

7 

ILE:14 

ILE:94 

LEU:57 

PHE:31 

PRO:58 

TYR:1

00 

VAL:5

4 

ALA:7 

GLY:1

8 

GLY:9

7 

ILE:14 

ILE:20 

LEU:24 

THR:4

6 

TRP:22 

ALA:7 

ARG:3

7 

GLN:2

8 

GLY:9

7 

ILE:14 

ILE:94 

PHE:31 

THR:4

6 

VAL:5

4 

ILE:14 

-

12.

5 

-

13.

1 

-

13.0 

RM1

5 

 

C29H25F2N7O ALA:1

26 

ARG:4

5 

GLN:2

8 

ILE:14 

ARG:4

5 

GLY:1

8 

ILE:20 

ILE:94 

LEU:50 

ALA:7 

ALA:1

26 

ARG:4

5 

ASP:27 

GLN:2

ARG:45  

ILE:94 

-

12.

0 

-

11.

8 

-

14.1 
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ILE:94 

LEU:54 

PHE:31 

PRO:51 

SER:49 

TRYl0

0 

VAL:5

4 

8 

GLY:1

8 

ILE:14 

ILE:20 

ILE:94 

PHE:31 

THR:4

6 

VAL:5

4 

RF02 

 

C27H20F3N7O ALA:7 

ASP:27 

GLN:2

8 

GLY18 

ILE:5 

ILE:20 

LEU50 

TRP:6 

ALA:1

26 

ARG:2

3 

ASP:19 

GLY:1

8 

GLY:9

5 

GLY:9

6 

ILE14 

ILE:20 

PHE:31 

PRO:41 

SER:45 

ASP:27 

ILE:20 

PHE:31 

PRO:51 

SER:46 

THR:4

6 

ILE:20 

11.

4 

-

12.

9 

-

14.0 
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RF43 

 

C28H24FN7O ALA:7 

ALA:1

26 

ILE:5 

ILE:14 

ILE:20 

PHE:31 

ALA:1

26 

ARG:4

5 

ILE:94 

LEU:50 

LEU:57 

PHE:31 

SER:49 

TYR:1

00  

ALA:1

26 

ARG:4

5 

ILE:94 

LEU:50 

LEU:57 

PHE:31 

SER:49  

ALA:126 

PHE:31 

-

11.

0 

-

12.

1 

-

13.1 

AS1

22 

 

C20H19F2N7O ALA:7 

ILE:5 

ILE:94 

PHE:31 

ALA:7 

ALA:1

26 

ARG:1

6 

ARG:4

5 

ASP:19 

GLY:1

5 

GLY18 

ILE:5 

ILE:14 

ILE:20 

PHE:31  

ALA:7 

ILE:14 

ILE:94 

LEU:57 

PHE:31 

THR:4

6 

TRY:1

00 

ALA:7 

PHE:31 

-

10.

3 

-

11.

3 

-

12.7 

 

In this section, we also took note of the amino acids that were universally or commonly 

participating in interactions across all Mtb-DHFR receptors. In table 4.7, we contemplated the 

nature or type of interactions tangled between 10 ligands and each DHFR macromolecular 

receptor. 
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Table 4. 7: Ligand-target interactions of 10 best ligands for all three receptors (PDB ID: 4KNE, PDB ID: 4KL9, PDB 

ID: 1DG8) along with their type of interactions. 

 

Name 4KNE-Ligand interaction 4KL9-Ligand interaction 1DG8-Ligand interaction 

ANS

01 

 

  

H-

Bonding 

Interacti

on 

Hydropho

bic 

Interactio

n 

Electrostat

ic 

Interaction

s 

H-

Bonding 

Interacti

on 

Hydroph

obic 

Interactio

n 

Electrosta

tic 

Interactio

ns 

H-

Bonding 

Interacti

on 

Hydropho

bic 

Interactio

n 

Electrostatic 

Interactions 

ALA:7 

ILE:14 

TRY:100 

PHE:31 

LEU:57 

ILE94 

N/A ASP:27 

GLN:28 

ILE:5 

TRP:6 

ILE:14 

ILE:20 

N/A ALA:7 

ILE:14 

ILE:94 

LEU:57 

PHE:31 

N/A 

RM1

5 

  
 

H-

Bonding 

Interacti

on 

Hydropho

bic 

Interaction 

Electrostat

ic 

Interactio

n 

H-

Bonding 

Interacti

on  

Hydroph

obic 

Interactio

n 

Electrosta

tic 

interactio

n 

H-

Bonding 

Interacti

on  

Hydropho

bic 

Interactio

n 

Electrostati

c 

interaction 

ILE:14 

ILE:94 

GLN:28 

ALA:126 

ARG:45 

PHE:31 

LEU:57 

ILE94 

N/A ILE:94 

TYR:10

0  

ARG:45 

GLY:18 

ILE:20 

LEU:50 

N/A ALA:7 

ASP:27 

GLN:28 

GLY:18 

ILE:14  

ALA:126 

ARG:45 

ILE:20 

ILE:94 

N/A 
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Compound ANS01 formed five convectional hydrogen bonds against receptor PDB ID: 4KNE, 

which include two H-bonds between –NH and the nitrogen (N) atom on the 5-membered ring of 

the triazine moiety to the amino acid ALA:7, the same –NH formed another convectional H-bond 

with ILE:14 which is in-turned hydrogen-bonded to another –NH on the 6-membered ring of the 

PRO:51 

VAL:54 

PHE:31 

VAL54 

R43 

   

H-

Bonding 

Interacti

on 

Hydropho

bic 

Interaction 

Electrosta

tic 

Interactio

n 

H-

Bonding 

Interacti

on  

Hydropho

bic 

Interactio

n 

Electrosta

tic 

interactio

n 

H-

Bonding 

Interacti

on  

Hydropho

bic 

Interaction 

Electrostati

c 

interaction 

ILE:14 ALA:126 

ALA:7  

ILE:5  

ILE:20  

PHE:31 

N/A SER:40  

TYR:10

0 

ALA:126 

ARG:45 

ILE:94 

LEU:50 

LEU:57 

PHE:31 

N/A SER:49 ALA:126 

ARG:45 

ILE:94 

LEU:50 

LEU:57 

PHE:31 

N/A 

AS12

2 

 
 

 

H-

Bonding 

Interacti

on 

Hydrophobi

c Interaction 

Electrost

atic 

Interactio

n 

H-

Bonding 

Interacti

on  

Hydroph

obic 

Interactio

n 

Electrosta

tic 

interactio

n 

H-

Bonding 

Interacti

on  

Hydropho

bic 

Interaction 

Electrostati

c 

interaction 
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same triazine moiety. The final hydrogen bond is between the –CNH extending from the 5-

membered ring of the triazine structure and the TYR: 100 residue.  Other interactions include one 

unfavorable bump between ILE: 94 residue and oxygen atom on the linker of triazine and non-

triazine moiety. Two pi-pi staked between PHE:31 and the naphthalene part of the three fused 

benzene ring structure, three pi-alkyl interactions between i.e. LEU:57 and the third ring of the 

non-triazine moiety. The non-triazine moiety also formed pi-alkyl interactions with PHE:31 and 

ILE:94.  

Contrasting with other receptors i.e., PDB ID:4KL9 and 1DG8, all their complexes with ANS01 

bring forth five (5) convectional hydrogen bonds despite differences. With 4kl9, ANS01 formed 

convectional hydrogen bonds with ASP: 27, GLN: 28, TRP:6, and ILE:5. 1DG8 on the other hand 

1DG8 and ANS01 had five hydrogen bonds formed between residues ALA:7 (2-H bonds), ILE:14 

(2-H bonds), ILE:94 (1-H - bond), and also formed two pi-pi stacking interactions with the PHE:31 

residue plus one pi-alkyl bond with LEU:57 residue. The second molecule, AS01 established four 

hydrogen bonds with receptor 4kne, two of which were convectional (with residues ASP: 27 and 

SER:49), and the other two (with residues GLY:15 and PHE:31) were carbon-hydrogen bonds. 

Again with 4kne, AS01 formed hydrophobic interactions comprising two pi-alkyl interactions by 

residues ALA: 126 and ILE: 14. Regarding PDB ID: 4KL9 and AS01, we see a total of seven H-

bonds being formed, which include five convectional hydrogen bonds, one carbon-hydrogen bond, 

one hydrogen fluoride, and two types of hydrophobic interactions i.e., two pi-pi stacking both with 

the ILE:20 residues, and two pi-alkyl interactions with ILE:20 and ILE:14 residues. Two 

convectional H-bonds were formed between ASP:27 residue with two –NH groups on the 1,3,5-

triazine moiety, and the third convectional H-bond is between the GLY:28 and 1,2,4-triazole ring 

that is fused with the triazine, and there also exists another convectional hydrogen bond between 

–NH on the linker of triazine and non-triazine moieties and the ILE:5 residue. Lastly, on the three 

fused non-triazine rings there was a convectional H-bond on the Fluorine atom and SER: 49 

N/A ALA:7 

ILE:5 

ILE:94   

PHE:31  

N/A ASP:19 

GLY:15 

ILE:14  

ALA:126 

ARG:45 

ALA:7 

ILE:5 

ILE:20  

N/A ALA:7 

ILE:14 

ILE:94 

THR:46 

TYR:10

0 

LEU:57 

PHE:31 

N/A 
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residue. Similarly, seven hydrogen bonds were observed concerning PDB ID: 1DG8, and five of 

them were H-bonds conventionally formed with amino acid residues ALA: 7, ILE: 14, and ILE: 

94. AS01 had a very good docking score of -12.7 kcal mol-1, perhaps this was due to principally 

very strong H-F bonds and many other types of interactions.  

Given the PDB ID:4KNE-RF02 complex, we observed four hydrogen bonds with ASP:27, TRP:6 

(HF), GLY:18 (convectional H-bond) on the –NH of 1,2,4-triazole, carbon-hydr0gen bond with 

GLN:28. The pi-pi stacking between the LEU:50 residue and 1-fluoro-4-methyphenalene ring, and 

between TRP:6 residue with the cyclopentadiene of the 3aH-indene moiety, two pi-alkyl 

interactions between two amino acid residues, i.e. ALA:7  ILE:5, and cyclopentadiene of the 3aH-

indene moiety. ALA:7 and ILE:20 were also involved in pi-alkyl interactions with the benzene 

ring that is fused with the cyclopentadiene.  

Among all RF02 complexes, PDB ID: 4KL9 formed 15 interactions with more than 4kne or 1dg8. 

4KL9 was observed to participate in two convectional hydrogen bonds formed between two –NH 

groups of the 1,3,5-triazine moiety and the GLY:18 residue. The same triazine ring formed a pi-

lone pair interaction with the SER:49 residue. The fluoro-cyclopentadiene that is involved in two 

carbon-hydrogen bonds with two amino acid residues, GLY:95 and GLY:96, also participated in 

pi-alkyl interaction with ALA:126 and ILE:14 residues. The pi-alky interactions between the –

CH3 of the 1-fluoro-4-methyphenalene and PHE:31 were also confirmed, along with the pi-pi T-

shaped bond between phenalene and PHE:31 residues ILE: 20 residues formed two pi-alkyl 

interactions with the phenalene ring and indene structures. The triazine structure formed pi-

cationic interactions with both ARG: 23 and ASP:19, while the third pi-cationic bond was between 

ARG:23 residue and the 1,2,4-triazole moiety which had a pi-alky bond with the PRO:51 residue.      

One of the study's best docking scores (ΔG = -14.0 kcal mol-1) was witnessed between RF02 and 

PDB ID: 1DG8, which was only supported by nine interactions. Against 1DG8, RF02 initiated one 

convectional hydrogen bond between the –NH of the triazine moiety and SER: 49 residues. The 

same triazine ring formed a carbon-hydrogen bond with THR: 46 residues. The ASP: 27 residues 

and the 1-fluoro-4-methyphenalene interacted through a hydrogen fluoride (HF) bond. Both the 

triazine ring and the benzene fused the 5-carbon membered ring formed pi-alkyl interactions with 

ILE: 20 residue, and similarly, a pi-alkyl interaction existed between the 5-carbon membered ring 

and PRO:51. The other pi-alkyl bond was the same as the one between the –CH3 of the 1-fluoro-
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4-methyphenalene and PHE: 31 with PDB ID: 4KL9, and two pi-pi T-shaped bonds between 

PHE:31 residue and the phenalene structure were confirmed.  

Another ligand with a very good binding affinity was RM11 (ΔG = -13.1 kcal mol-1 specifically 

with receptor 4kl9) which, in its interaction with PDB ID: 4KNE formed convectional hydrogen 

bonds with ILE: 94 and TYR:100 residues by the –NH group on the linker molecule. The fluorine 

atom on the 2-fluoro-1,3,5-triazine moiety of RM11 formed a convectional bond and a carbon-

hydrogen bond with GLY:97 and GLY:96, respectively. The –NH functional group on the 1,2,4-

triazole was conventionally hydrogen-bonded with ILE:14 residue, while the F atom on 1-fluoro-

4-methyphenalene was involved in the formation of hydrogen fluoride (HF) bond with ASP:27 

and GLN:28 residues. The phenalene ring was involved in the two types of hydrophobic 

interactions, i.e., one pi-alkyl with ILE: 94 and two pi-pi stacked interactions with PHE:31 residue. 

Other hydrophobic interactions were also present, including the alkyl bond between the –CH3 of 

the 3-methylidene and the VAL: 54 residue. In addition, the benzene and the cyclopentadiene rings 

of the 3-methylidene formed the pi-alkyl and pi-pi stacking interactions with the VAL:54 and 

LEU:50 residues respectively. Likewise, the cyclopentadiene ring also participated in pi-pi stacked 

interaction with PRO: 58 residue.    

Regarding the complex PDB ID: 4KL9 – RM11 we observed the absence of conventional 

hydrogen bonds; instead there were unfavorable donor-donor interactions between –NH on the 

triazine moiety and the linker molecule, with the GLY:97 residue. The –CH3 of N-methyl-1,2,4-

triazole-3-amine in R11 interacted with GLY:18 through carbon-hydrogen bonding. Also 

witnessed were the pi-alkyl interactions between the phenalene ring and the amino acid residues 

ILE:14 and ILE:20, additionally, the phenalene ring formed two pi-sigma bonds with ILE:20 and 

THR:46 residues.  Table 3.5 indicated two alkyl bonds formed by the –CH3 group of the 3-

methylidene and the LEU: 50 and TRP:22 residues. The pi-alkyl interaction between the benzene 

ring fused with methyl-cyclopentadiene and the ALA:7 residue is all driven by molecule RM11.   

The interaction of compound RM11 with Mtb-DHFR PDB ID: 1DG8 receptor was meticulously 

considered in which ALA:7 and ILE:14 formed convectional hydrogen bonds with –NH groups 

on 1,2,4-triazole moiety. The third and fourth convectional hydrogen bonds were on the amine (-

NH) group of the N-methyl-1,2,4-triazole-3-amine bonded with the ILE:94 and on the F-atom 

attached to the 1,3,5-triazine moiety bonded with THR:46. The other hydrogen bonds included 
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one carbon-hydrogen bond on the F-atom attached to the 1,3,5-triazine moiety bonded with 

GLY:96 residue. The other was a hydrogen fluoride bond on fluoro-4-methyphenalene and 

GLN:28 residue. The two types of hydrophobic interactions comprised the two pi-pi stacked 

interactions between the phenalene and PHE:31. The phenalene ring also had pi-alkyl interaction 

with ILE:94 residue. The benzene ring fused with methyl-cyclopentadiene formed a pi-alkyl bond 

with VAL:54, and likewise, its adjacent cyclopentadiene was involved in another pi-alkyl bond 

with ARG:32 residue.   

4.6 Selectivity Studies 

In this section, we looked at molecules designed to hypothetically mimic the binding of 

methotrexate inside the binding pocket of Mtb-DHFR. The 1,2,3-triol was attached to the non-

triazine moiety in each of these molecules to optimize and amplify Mtb-DHFR selectivity. Due to 

their possession of the 1,2,3-triol group, these molecules are anticipated to favor the binding of 

Mtb-DHFR over h-DHFR since it is believed that the Mtb-DHFR also contains a glycerol binding 

pocket which is absent in h-DHFR. Finally, we displayed in table 4.8 the six newly designed 

molecules with a 1,2,3-triol attached to them, eleven (11) prequalified drug-like molecules, and 

the reference isoniazid together with the two starter designing molecules (THT1 & THT2).   

 

 

Table 4. 8: Virtual screening of the glycerol mimicking molecules and the prequalified drug-like molecules to evaluate 

their selectivity properties towards h (human) DHFR (PDB ID: 1OHJ) and Mtb-DHFR (PDB ID: 1DG8) 

Name  Structure h-DHFR Mtb-DHFR  

    
Binding Affinity (ΔG 

Kcal mol-1)  

Binding Affinity (ΔG 

Kcal/mol-1)  

 GM1 

 

 -8.4  -8.6 
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 GM6 

 

 -8.8 -9.7  

 GM12 

 

 -10.3 -10.3  

 RF02 

 

 -12.1  -14.0 

 RF28 

  

 -11.3  -14.1 

RF43 

 

-10.4 -13.1 

RF56 

 

-10.7 -13.2 

RM11 

 

13.0 -13.0 
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RM15 

 

-11.5 -14.0 

Note: A synergistic exploit of structural modification to improved affinity toward the target, and 

modification to disfavor or lower affinity toward off-target would greatly improve selectivity.  

 

Many compounds in table 4.8 showed higher binding affinity towards Mtb-DHFR, suggesting that 

compounds will select Mtb-DHFR as their target over h-DHFR. Among all glycerol-mimicking 

compounds, GM10 (structure and interactions in figure 4.10) had the highest selectivity score 

marked by the big difference or gap in its binding energy between both h-DHFR and Mtb-DHFR. 

Compound RM11 and GM 13 showed similar binding affinity towards both h-DHFR and Mtb-

DHFR, and this probably suggests similar selectivity to both targets.  However it is possible to 

realize two different compounds have similar affinities but different selectivity profiles, owing to 

the fact that different forces can establish different thermodynamic profiles; therefore, it is 

imperative to master the reasons behind such peculiar discrepancies (Kawasaki, & Freire, 2011), 

and additionally in vivo selectivity studies are therefore crucial to validate these in-silico findings. 

 

 

Figure 4. 10: Complex structures of MtbDhfr and humanDhfr with molecule (ligand) GM10 and RF28 
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Compound GM10 formed many interactions with Mtb-DHFR than with h-DHFR (figure 4.10) 

which contributed to its higher affinity for Mtb-DHFR even though the forces that contribute to 

binding affinity do not always contribute equally to selectivity. A tight fit between the ligand and 

its binding target not only maximizes van der Waals interactions but also reduces the probability 

that the ligand will be accommodated equally well in off-target molecules. Affinity gains with off-

target proteins will not be as significant as with the target. In figure 4.10, we noticed molecule 

GM10 establishing more hydrogen bonds with Mtb-DHFR compared with h-DHFR, this 

observation can be attributable to an increase in selectivity since hydrogen bonds are also 

significant contributors to selectivity owing to their stringent distance and angle constraints. 

Ultimately, isoniazid, THT1 and THT2 confirmed greater affinity to h-DHFR suggesting that their 

interactions favored h-DHFR selectivity.  

We also compared our designed compounds with the reference ligand in terms of the binding 

affinity and selectivity. From table 4.9, it can be seen the reference ligand used had good binding 

affinity. However, according to the observed docking scores, it can be inferred that NSC-339579 

had slightly poor selectivity toward MtbDHFR. Compared to the designed compounds of this 

research, NSC-339979 falls below compounds such as RF02, RM15, etc., which had excellent 

binding energy around -14.1 kcal/mol.  

Table 4. 9: Binding affinity and some druglike properties of the reference ligand, NSC-339579 

MtbDHFR (kcal/mol) Human-DHFR (kcal/mol) 

Macromolecule PDB IDs: 

4KNE 4KL9 1DG8 1OHJ 

-9.1 -9.3 -10.1 -10.0 

Some Druglike Properties 

TPSA MRcons 
CYP450 

inhibition 
Lipinski Rule of 5 
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128.57 Å² 

 

98.41 

2 isoforms: 

CYP1A2 

CYP2D6 

0 Violations 

 

NSC-339599 also exhibited excellent druglike properties, with its TPSA and MRcons values 

falling within the acceptable range. NSC-339599 also proved perfect obedience to the Lipinski 

rule of five, meaning it can be highly recommended for oral administration if developed into a 

drug. However, NSC-339599 was found inhibitory to the two CYP450 isoforms i.e. CYP1A2 and 

CYP2D6.  Moreover, these good druglike properties (table 4.9) together with its reported IC50 

value (IC50 = 6 nM, NSC-339599 can be justified in its use as a reference compound in this study. 

4.7 Molecular Dynamics  

Molecular Dynamics (MD) Simulations were conducted through GROMACS 2022 software 

packages supported by NVIDIA GeForce GT 730 graphics card in Linux Ubuntu 22.10.  

In Molecular Dynamics (MD) simulation in this study, atoms and molecules interacted as a 

function of time (ns) making MD an ideal computer-aided drug discovery (CADD) approach for 

the analysis of the dynamic behavior of complex systems.  RMSD, RMSF, Rg, and the number of 

intermolecular Hydrogen bonds were the structural parameters used to evaluate the stability, 

flexibility, dynamic behavior and compactness of the ligand-protein complexes.  

The protein-ligand complex of DHFR-AS100 was found in the range of 0.000578 nm – 0.243996 

nm with an average of 0.173629 nm for the ligand (AS100) after least square fit to protein 

backbone, 0.000559 nm – 0.173629 nm with an average of 0.105358 nm for ligand AS100 alone 

and, 0.000596 nm – 1.485432 nm with an average of 0.994 nm for Dhfr-AS100 complex (Figure 

4.11a). These observations have confirmed the stability of the MtbDhfr-AS100 complex without 

any major changes in orientation.  
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Figure 4. 11: RMSD as a function of 50 ns MD simulation time of schematic plots for docked complexes (a) 

MtbDHFR-AS100, (b) MtbDHFR-MOL15, (c) MtbDHFR-TB1, and (d) MtbDHFR-RM15. 

Figure 4.11(b) displays the least square fit RMSD of ligand (TB1)-backbone complex, and protein-

TB1 complex for MtbDhfr-TB1 complex for a 50ns time-dependent MD simulation run. For the 

Backbone-TB1 complex, the RMSD ranged from 0.000513 nm – 2.107266 nm with an average of 

1.596241 nm, while it ranged from 0.000472 nm – 0.162572 nm with an average of 0.124874 nm 

for ligand (TB1), and protein-TB1 range 0.000507 nm – 2.106764 nm with an average 1.599284 

nm. Figure 4.11(c) considered the stability of the MtbDhfr-Mol15 complex during a 50ns 

simulation time in which the complex was found in the range of 0.000492 nm – 1.39455 nm with 

an average of 1.035366 nm for Backbone-MOL15, 0.000471 nm – 0.445705 nm with an average 

of 0.341571 nm for the ligand MOL15 itself, and protein-mol15 ranged from 0.000491nm – 

0.13915 nm with an average of 1.035023 nm. The final protein-ligand complex (Figure 4.11(d)), 

Mtb:Dhfr-RM15 was found to range from 0.000518 nm – 0.211559 nm for Backbone-RM15, 

0.000489 nm – 0.239329 nm with an average of 0.157472 nm for the ligand (RM15) alone, and 
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0.000512 nm – 1.338172 nm having an average of 1.059586 nm for protein-ligand (MtbDhfr-

RM15) complex. The RMSD plots of compounds AS100 and RM15 overlay with their protein 

backbone, it is, therefore, apparent to infer stable complex formation.   

For the complexes MtbDhfr-TB1 and MtbDhfr-MOL15 in figure 4.11(b) and 4.11(c) respectively, 

there is an overlaying or superimposition between the protein-ligand and backbone-ligand 

suggesting the two complexes have similar stabilities. 

Considering the above mentioned average RMSD values for the selected four ligands, the ligands 

followed the following trend in terms of their stabilities: AS100 >TB1 RM15 > MOL15. This 

implies that ligand AS100 formed the most stable interactions in the active site of the MtbDHFR 

receptor target (PDB ID: 1DG8).   

4.7.1 Root mean square fluctuation (RMSF) 

Through the root mean square fluctuation (RMSF) (figure 4.12), we evaluated the structural 

integrity and atomic mobility of the four selected complexes. For the RMSF analysis, we 

calculated and plotted the RMSF value in nanometers and plotted against the residue number. The 

fluctuations of backbone-ligand complexes figure 4.12(b) and individual ligand figure 4.13 

structures were assessed for 50 ns simulation trajectories. The Backbone-AS100 showed an 

average RMSF value of 0.090 nm, Mol15 had an average value of 0.0912nm, RM15 had an 

average value of 0.0911 nm, and 0.107 nm in the backbone RMSF. These lower fluctuation values 

indicate high or very significant stabilities when the lead compounds interact with the MtbDHFR 

receptor.   

Again protein-ligand AS100 proved to be the most stable lead molecule over the simulation time 

as supported by its lowest average RMSF value of 0.090nm (Figure 4.12b) among other 

complexes. However high fluctuation up to 0.3277 nm was observed on AS100-Backbone but only 

during the initial stages around residue position 51 along the simulation period as the fluctuation 

turned minimal for the rest of the MD simulation time. 
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Figure 4. 12: Root mean square fluctuation (RMSF) graph (Fig 4.12a) showing minimum, maximum and average 

RMSF (Fig 4.12b) of Mtb-DHFR target when complexed with selected (4) ligands during a 50 ns Molecular dynamics 

(MD) simulation time. 

In terms of atomic mobility and stability of the four complexes, the following trend can be inferred: 

AS100 > RM15 > MOL15 > TB1, suggesting that the TB1 complex is more flexible. The observed 

fluctuations can therefore be considered negligible since they fall in the permissible range of 

around 1 – 3Å. The RMSF plots in figure 4.12a seem to superimpose on one another, thereby 

inferring the high stability of the understudy complexes.  
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Figure 4. 13: Root mean square fluctuation (RMSF) for ligands 

The root mean square fluctuation (RMSF) for the four ligands shown in figure 4.13 was calculated 

and plotted against the residue number. The average fluctuation for RM15, MOL15, AS100, and 

TB1 has been found in the range 0.112549, 0.123473, 0.047371, and 0.068926 nm. MOL15 had 

the highest fluctuation of 0.2646 nm around 43 – 49 residue number. In general, all ligands made 

minor fluctuations suggesting little to moderate flexibilities and high stabilities within their 

complexes in the active site of the Mtb-DHFR target.    

4.7.2 The radius of gyration, Rg 

The radius of gyration was also evaluated to investigate the level of compactness of the Mtb-DHFR 

(PDB 1D: 1DG8) protein in the presence and absence of the prequalified ligands (leads). Here the 

radius of gyration (Rg) analysis reveals information about the folding and unfolding properties of 

the MtbDHFR protein receptor and also the MtbDHFR-ligand structure.    

As shown in figure 4.14, all complexes formed a balanced and steady radius of gyration (Rg) with an average of 

approximately 0.3nm for Protein-RM15 which was the most compact over 50ns MD simulation. Complexes protein-

AS100, Protein-TB1, and Protein-MOL15 were all stable at ~1.6 nm (figure 4.14b). These inferences confirm that the 
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protein-ligand complexes formed are compact and stable.  

 

Figure 4. 14 : The radius of gyration (Rg) for ligands (a) and for protein (b) to which ligands bound during a 50 ns 

MD Simulation period. 

In general, the observations proved protein stability boost upon binding of the ligands.   

4.7.3 Hydrogen bonds Analysis 

The stabilization of the secondary and tertiary structure of protein structure is provided and 

sustained hydrogen bonds. In molecular dynamics simulations, the binding affinity of the ligand 

to its target is well clarified or elucidated by the formed hydrogen bonds. This observation led to 

a statement generalized by Menendez et al. (2016) states that the more the number of hydrogen 

bonds formed, the stronger the binding affinity of the ligand to its target. Figure 4.15 showed the 

number of hydrogen bonds formed by all selected four ligands during a 50 ns MD Simulation time.   

For ligand AS100, a maximum of five hydrogen bonds were formed during a molecular dynamic 

simulation of 50 ns. Ligand AS100 consistently formed two and three hydrogen bonds around 30 

– 35 ns.  Ligand MOL15 formed up to seven hydrogen bonds in the active site of DHFR protein. 

Moreover, MOL15 formed four hydrogen bonds more frequently for a very long time from around 

five ns to 50 ns dynamic simulation time. Up to three and two hydrogen bonds were formed (at 

the beginning of the dynamic simulation) at 0.0 and 0.2 ns, respectively by RM15 in the active site 

of MtbDHFR protein target. Throughout the 50 ns simulation time, RM15 dominantly formed one 
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hydrogen bond. Ligand TB1 also formed three hydrogen bonds which appeared briefly around 42 

ns, and one hydrogen bond frequently appeared during the 50 ns.  

 

 

Figure 4. 15: The total number of hydrogen bonds between MtbDHFR protein and ligands AS100, MOL15, RM15, 

and TB1  

 

The ligand MOL15 (figure 4.16) formed more hydrogen bonds (7) with an average of 3.443, 

AS100 formed an average of 2.1399 hydrogen bonds, while 0.5584 were formed by ligand TB1, 

and RM15 formed the least at an average of 0.2737.      

In general, the complexes formed many hydrogen bonds, which explains the reasons behind the 

low fluctuations and high stability of the complexes. These results support excellent binding 

affinities of these four ligands as observed earlier by molecular docking.   

4.7.4 The outcomes of carbodiimide coupling using DCC 

Figure 4.16 below is the illustration of the reaction mechanism. During synthesis as the reaction 

matrix was in reflux stage, a sweet/fruit-smelling odor evolved and confirmed successful formation 
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of an ester anticipated in figure 4.16. The persistent fruit smelling smell (pointing to the smell) 

gave optimism for the successful progress of the reaction.  

 

 

Figure 4. 16: Scheme for the DCC-Mediated Amide coupling reaction mechanism 

It was also discoverd that, a four (4) hour attempts to remove DMSO by concentrating in a rotary 

evaporator proved a futile exercise owing to the high boiling point of DMSO (189˚C) regardless 

of the high-temperature (120˚C) water bath. In several attempts to achieve crystallization it was 

also rediscovered that crystallization is difficult to form in DMSO (Wu et al., 2014), however, the 

needle-like shaped crystals eventually appeared in the Erlenmeyer flask after four days. We also 

realize that crystallization can occur and easier in n-BuOH - EtOAc solvent mixture when the 

product was left just for over a night. The mentioned observations were similar for both 

synthesized compounds, AZ01 and AZ02.  
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Table 4. 10: Characteristics of the compounds crystals   

Compound % Yield  Appearance  

AZ_01 74 Uniform long needle-like transparent crystals 

AZ_02 67 Uniform irregular crystals  

UNK 46 Fine needle like transparent crystals 

The distinction between the crystals in terms of shape was attributed to the different identities the 

synthesized compounds, with of AZ01 formed needle-shaped crystals while AZ02 produced 

irregular-shaped crystals. Each reaction process was performed in triplicate for each compound 

(i.e. AZ01 & AZ02) being synthesized, producing same and very consistent results including a 

percentage yield of 74% and 67% respectively conferring reproducibility and validation of the 

synthetic routes or protocols. However, for compound AZ01, crystallization proved difficult for 

the applied procedure promoting modification of the procedure by introducing column 

chromatography. After column chromatography, only two out of six collected fractions appeared 

with crystals but of different shape suggesting AZ01 coexisted with another compound (suspected 

to be DCU) before separation by column chromatography. As a result, all samples for the 

attempted synthesis were sent to the Holistic Drug Discovery and Development (H3D) center in 

Cape Town, South Africa for further experimentation such as for proton and carbon nuclear 

magnetic resonance (C/H-NMR) spectroscopy and also biological assays.  
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CHAPTER 5  

 

CONCLUSION 

Under the major deliverables of this study, we have managed to leverage suitable scientific 

knowledge, approaches, and techniques to generate a 1 700-capacity compound library of 1,3,5-

triazine derivatives. Among other attributes of a good drug, we reported in this study the 

exploitation of the key distinguishing features between the binding sites of MtbDHFR and 

humanDHFR enzymes in pursuit to address the question of selectivity against the two enzyme 

receptors. These selectivity studies enabled the design of compounds such as GM10 that were 

MtbDHFR target specific or selective. In general, many compounds greatly favored MtbDHFR 

inhibition than humanDHFR and this predicted successful selectivity.  Central to the optimization 

stage during design was the inclusion and linking of -C 6 H 5 NH 2 group to the non-triazine 

moiety of the starter molecules (THT1 & THT2) via Structure-Activity Relationship (SAR), which 

yielded compounds such as KTHT1 and MTHT1 which had better binding energies. Another 

designing strategy i.e. 1˚ and 2˚ scaffold hopping techniques yielded compounds with the most 

significant binding affinities across the whole library of which 2˚ scaffold-hopping generated 

compounds with novel scaffolds compared to 1˚ hop. Virtual screening across three 

macromolecular receptors of MtbDHFR accomplished by AutoDock vina was successfully done 

with intense inquisitive to reveal the characteristics of the library in terms of biological activity, 

binding affinity, and selectivity. Another important factor that was considered was the synthetic 

accessibility (SA) and in this respect, all the prequalified shortlisted ligands had synthetic 

accessibility scores (SAscore) less than 6.5 denoting the feasibility and ease of synthesis of these 

ligands. In relation to selectivity, we saw ligands exhibit their selectivity towards Mtb-DHFR 

rather than human DHFR. In-silico ADMET prediction studies were successfully done where we 

were able to identify lead or drug-like compounds with an acceptable toxicity profile. The ADMET 

profile of the prequalified molecules showed that molecules can progress further in the TB drug-



85 
 

discovery pipeline. The shortlisted compounds showed better drug-like and pharmacokinetic 

properties than the reference ligands (NSC-339579 and isoniazid) and starter molecules THT1 & 

THT2 hence potential anti-tubercular molecules. The stability verification of the MtbDHFR 

enzyme in complex four lead compounds was navigated and determined through the 50 ns MD 

simulations which also confirmed that the structure formed several hydrogen bonds with the amino 

acids in the binding site. Lastly, the final objective which required the synthesis of the prequalified 

molecule 1,3,5-triazine derivative was carried out, paving the way for further exploration and 

experimentation work such as biological assays and potentially preclinical testing.  

This study is a stepping stone to the establishment of a validated and quintessential protocol for 

the design and synthesis of tetrahydro-1-3-5-triazine derivatives and a data-set for novel bioactive 

compounds that can be modified into anti-tuberculosis drugs. Furthermore, the inter-disciplinary 

project could advance basic science at CUT and boost molecule design and synthesis in addition 

to encouraging inter-disciplinary collaborations. Part of the research work was published in the 

Frontiers in Molecular Biosciences Journal. Two manuscripts have been submitted for publication 

and are currently under peer review. To further communicate the research findings, a poster 

presentation was done during the International Symposium at the H3D Organization (the pioneers 

of drug discovery in Africa) held at the Webersburg Estate, in the Stellenbosch winelands over the 

period 25-28 October2022. 

Conclusively it is imperative to mention that 1,3,5-triazine scaffolds holds a great promise to the 

design of novel effective anti-TB leads and certainly are a beacon of hope for the eradication of 

this global burdensome TB disease.  

5.1 Recommendations and Future Work 

While the tetrahydro 1,3,5-triazine derivatives have presented excellent binding affinity against 

MtbDHFR, it can be recommended that medicinal chemists pay much attention and dedicate more 

time and efforts to developing of new series of tuberculosis drugs. Noticing the potential emanating 

from this research deliverables, Chinhoyi University of Technology should acknowledge and 

promote the arena of drug discovery and development since it is still new and foreign to many 

faculties and even to the school of natural sciences and mathematics at CUT. More 

interdisciplinary collaborations are also recommended across Africa and beyond, as this can make 
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wider strides in the direction of eradicating this burdensome tuberculosis. From the design point 

of view, it is imperative that we also consider other triazine-based scaffolds such as 1,2,3- triazine, 

and 1,2,4- triazine as this may also be another source of novel bioactive leads.  While only two 

compounds were synthesized from a whole-generated library capacity of 1 700 compounds, we 

should as a matter of urgency consider as part of our future work to synthesize and carry out 

biological evaluations of many other promising compounds to maximize the probability of success 

in finding an improved and more safe TB drug. Alternatively other than structure-based 

techniques, our future research should embrace ligand-based drug design approaches such as 

pharmacophore modeling, quantitative structure-activity relationship, etc. We also recommend 

and propose as future work that more than 50 ns (e.g. 200ns) molecular dynamics be done to fully 

understand the bioactive stability of the compounds inside the binding site of the MtbDhfr target, 

and also molecular mechanics be carried out to understand actual binding energy of these ligands 

thus generating more accurate in-silico predictions in drug discovery research expedition. 
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APPENDICES 

5.2 Appendix A: Poster presentation 
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5.3 Appendix B: Research Paper 
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5.4 Appendix C: Manuscript  
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5.6 Appendix 1: Structure-Activity Studies 

# Name Analog Structure 

Receptor-Ligand Binding 

Energy (ΔG, Kcal/mol) 

4kne 4kl9 1dg8 

14 NTHT1 Substituents  

R1 R2 R3 R4 

- 

C6H5NH2 

 

- 

C6H5NH2 

 

- 

C6H5NH2 

 

- 

C6H5NH2 

 

 

  -9.5 -8.2 

 

-7.8 

 

15 OTHT1 Substituents  

R1 R2 R3 R4 

- 

C6H5CH3 

 

- 

C6H5NH2 

 

- 

C6H5CH3 

 

- 

C6H5NH2 

 

 

  -9.6 -8.2 

 

-7.4 
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16 PTHT1 Substituents  

R1 R2 R3 R4 

- 

C6H5OH 

 

- 

C6H5NH2 

 

- 

C6H5OH 

 

- 

C6H5NH2 

 

 

  -9.3 -8.8 

 

-7.7 

 

17 QTHT1 Substituents  

R1 R2 R3 R4 

- 

C6H5OH 

 

- 

C6H5OH 

 

- 

C6H5OH 

 

- 

C6H5OH 

 

 

  -9.6 -8.7 

 

-7.5 

 

18 RTHT1 Substituents  

R1 R2 R3 R4 

- C6H5CH3 

(fused) 

- C6H5CH3 

(fused) 

-9.9 -9.6 

 

-10.3 
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19 ATHT2 Substituents  

R1 R2 R3 R4 

H H H H 

 

  -7.4 -8.1 

 

-8.2 

 

20 BTHT2 Substituents  

R1 R2 R3 R4 

 -CH3 -H -H -H 

 

-8.1 -8.1 

 

-8.1 

 

21 CTHT2 Substituents  

R1 R2 R3 R4 

-CH3 -CH3 -H -H 

  -7.6 -8.4 

 

-8.6 
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22 DTHT2 Substituents  

R1 R2 R3 R4 

-CH3 -CH3 -CH3 -H 

 

  -8.3 -8.7 

 

-9.0 

 

23 ETHT2 Substituents  

R1 R2 R3 R4 

-CH3 -CH3 -CH3 -CH3 

 

  -8.4 -8.4 

 

-9.1 
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24 FTHT2 Substituents  

R1 R2 R3 R4 

-

COCH3 

-H -H -H 

 

  -7.9 -8.0 

 

-8.2 

 

25 GTHT2 Substituents  

R1 R2 R3 R4 

-

COCH3 

-CH3 -H -H 

 

  -8.5 -8.2 

 

-8.4 

 

26 HTHT2 Substituents  

R1 R2 R3 R4 

-CH3 -CH3 -

COCH3 

-H 

 

  -8.0 -8.5 

 

-8.7 
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27 ITHT2 Substituents  

R1 R2 R3 R4 

-CH3 -C3H7 -

COCH3 

-H 

 

  -7.8 -8.3 

 

-8.9 

 

28 JTHT2 Substituents  

R1 R2 R3 R4 

-

COCH3 

-H -C3H7 -H 

 

 -8.1 -8.8 

 

-9.4 

 

29 KTHT2 Substituents  

R1 R2 R3 R4 

-H -

C6H5NH2 

 

-H -

COCH3 

  -8.9 -9.2 

 

-8.9 
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30 LTHT2 Substituents  

R1 R2 R3 R4 

H - 

C6H5NH2 

 

H - 

C6H5NH2 

 

 

  -9.2 -9.7 

 

-9.2 

 

31 MTHT2 Substituents  

R1 R2 R3 R4 

H - 

C6H5NH2 

 

- 

C6H5NH2 

 

- 

C6H5NH2 

 

 

  -9.4 -9.0 

 

-8.6 
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32 NTHT2 Substituents  

R1 R2 R3 R4 

- 

C6H5NH2 

 

- 

C6H5NH2 

 

- 

C6H5NH2 

 

- 

C6H5NH2 

 

 

  -9.3 -7.9 

 

-8.2 

 

33 OTHT2 Substituents  

R1 R2 R3 R4 

- 

C6H5CH3 

 

- 

C6H5NH2 

 

- 

C6H5CH3 

 

- 

C6H5NH2 

 

 

  -9.7 -7.9 

 

-8.5 
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34 PTHT2 Substituents  

R1 R2 R3 R4 

- 

C6H5OH 

 

- 

C6H5NH2 

 

- 

C6H5OH 

 

- 

C6H5NH2 

 

 

  -9.3 -8.1 

 

-7.8 

 

35 QTHT2 Substituents  

R1 R2 R3 R4 

- 

C6H5OH 

 

- 

C6H5OH 

 

- 

C6H5OH 

 

- 

C6H5OH 

 

 

  -9.6 -8.3 

 

-8.1 
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36 RTHT2 Substituents  

R1 R2 R3 R4 

- C6H5CH3 

(fused) 

- C6H5CH3 

(fused) 

 

  -9.6 -10.0 

 

-10.3 

 

  

 

 

5.7 Appendix 2: Lipnski rule of five, Synthetic Accessibility, and ADME Studies 

Name 
Lipinski Rule of 

Five 

Cytochrome P450 

(CYP450) Inhibition 
Aqueou

s 

Solubili

ty (Log 

S) 

Syntheti

c 

Accessi

bility 

(SA 

score) 

Quantita

tive 

Estimate 

of Drug-

Likeness 

(QED) 

Binding Affinities 

(kcal mol-1) ΔG 

Binding 

  
Isoforms 

1a2 
2c

9 

2c1

9 

2d

6 

3a

4 
4kne 4kl9 1dg8 

AS05 

Molecul

ar 

Weight 

(<500D

a) 

299.4

8 
No No No No No -2.372 4.4229 0.3923 -7.19  -7.2  -7.0 

Log 

P(<5) 

2.047

8 
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H-Bond 

donor 

(5) 

4 

H-bond 

accepto

r (<10) 

7 

Violatio

ns 
0 

Drug-

Like 

Score 

(DLSco

ns) 

0.976

1 

AM0

3 

Molecul

ar 

Weight 

(<500D

a) 

411.4

6 

No No No No No -3.7889 4.7424 0.8520  -8.9  -9.6  -9.8 

Log 

P(<5) 

4.888

5 

H-Bond 

donor 

(5) 

3 

H-bond 

accepto

r (<10) 

10 

Violatio

ns 
0 

Drug-

Like 

0.778

5 
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Score 

(DLSco

ns) 

 AM1

0 

Molecul

ar 

Weight 

(<500D

a) 

364.5

  

No No No 
Ye

s 
No -4.1168 5.1215 0.8380 -9.5 -9.8 

-

10.6 

Log 

P(<5) 

2.867

  

H-Bond 

donor 

(5) 

3  

H-bond 

accepto

r (<10) 

 7 

Violatio

ns 
0  

Drug-

Like 

Score 

(DLSco

ns) 

0.9  

 AM2

6 

Molecul

ar 

Weight 
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5.8 Appendix 3: 2D -Structures, and  common amino acid residue interacting across all 

receptors, and binding affinities conjoined to three docked macromolecules (4kne, 

4kl9, 1dg8), of 10 pre-qualified ligands.  
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5.9 Appendix 4: Ligand-target interactions of 10 best ligands for all three receptors (PDB 

ID: 4KNE, PDB ID: 4KL9, PDB ID: 1DG8) along with their type of interactions. 
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5.10 Appendix 5: Virtual screening of the glycerol mimicking molecules and the 

prequalified drug-like molecules to evaluate their selectivity properties towards h 

(human) DHFR (PDB ID: 1OHJ) and Mtb-DHFR (PDB ID: 1DG8). 

Name  Structure h-DHFR Mtb-DHFR  

    
Binding Affinity (ΔG 
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Binding Affinity (ΔG 

Kcal/mol-1)  
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RF42 

 

-11.3 -12.3 

AS01 

 

-11.1 -12.7 

ANS01 

 

-10.7 -12.4 

ANS02 

 

-9.8 -10.9 
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