
CHINHOYI UNIVERSITY OF TECHNOLOGY

INSTITUTE OF LIFELONG LEARNING AND DEVELOPMENT STUDIES

CENTRE FOR LANGUAGE AND COMMUNICATION STUDIES

M.PHIL PROGRAMME

Out Of Vocabulary Words in Spell-

checking for Southern Bantu Languages:

a morphological analysis-based approach

for Shona

A dissertation by

Farayi Kambarami

(C18135499V)

A dissertation submitted to the Institute of Lifelong Learning’s Centre for Language and

Communication Studies in Fulfilment of the Requirements for the Award of the Master of Philosophy

Degree in Computational Linguistics

i | P a g e

The Approval page:

ii | P a g e

DECLARATION

I, Farayi Kambarami do hereby declare that this dissertation is the result of my own investigation and

research, except to the extent indicated in the acknowledgements, references and by comments

included in the body of the report, and that it has not been submitted in part or in full for any other

degree to any other university.

…………………... .………. …………. ………

Student signature Date Supervisor Date

iii | P a g e

Acknowledgement

I came to the field of research knowing that my knowledge of the subject that I wanted to investigate

was sparse. Despite this, I thought that I was prepared for the journey ahead. How wrong I was! To

say that the last three and a quarter years have been challenging is an understatement. At the same

time, they have been a period of great growth. Paradoxically, I am much clearer that I know even less

than I presumed to do at the start of that journey. This is all thanks to the amazing supervisory team

that I have had the privilege of being associated with.

When I decided that I was going to work on the natural language processing of Shona, I knew that I

wanted Prof Chimhundu to help me walk me through this path. Given his stature in the field, I was not

sure that he would be willing to take me under his wing. Again, I misjudged him. Not only did he

accept the challenge to mentor me, he has also been a calming influence, patiently directing me

through the research process, even offering his own resources to ensure that I succeed. Prof, I can

never thank you enough.

Drs Dube and McLachlan have challenged me and gifted me with a deeper appreciation for academic

rigour – both in terms of the actual research process itself and, even more importantly, in terms of

how this research is finally presented to the relevant research communities. Whilst I have tested the

patience of both men, they have been both gracious, continuing to offer support and guidance even

when it was clear that I was probably a lost cause…

I also found an academic home with Dr Bozic and his other research students. Listening to the

challenges that other (more advanced) students are grappling with and eavesdropping on the research

processes that others are following has helped to keep me motivated against the odds. The one-on-one

meetings that I have had with Dr Bozic as well as those with the group have provided me with an

alternative perspective of what it means to be an academic.

This journey would not have been possible without the support of my line manager, Ceri, our former

MD, Spencer Sonn, who encouraged me to take this leap and the team of my direct reports who have

had to bear the consequences of my limited availability to support them at times.

Finally, and definitely not least, to my wife Codilia and our two sons Dante Anesu and Anopa Ethan.

Even though I am fully alive, they have had to experience the life of a virtual widow and virtual

orphans as I have been mostly unavailable to them, especially over the last six months. They have had

iv | P a g e

to experience this whilst going through multiple other challenges which have not made it any easier

for them. To you all, please know that despite all appearances to the contrary, I really love you, and I

appreciate your patience and support for me. May God continue to bless and guide you. My gratitude

to him is given through my appreciation of your support for me.

December 2021

v | P a g e

Abstract:

Spell-checking can be reduced to a dictionary search for the given word in a comprehensive

dictionary of the target language. Previous research on South African Southern Bantu Languages

(SBLs) has demonstrated that this approach does not work well for conjunctively written

agglutinative languages. It is not possible to create comprehensive dictionaries for such languages

because their morphology allows them infinite possibilities for creating spoken and written words in

real context. In the standard dictionary, the headwords of the entries are very often not complete

words but morphemes around which words are built by inflection and compounding. Therefore,

when developing spell-checkers, alternative approaches have had to be developed to counter this. In

the absence of larger data sets and dictionaries, most of these approaches aim to enhance dictionary

sizes synthetically by using various heuristics. Lately a data driven approach has shown promise in

delivering effective results without requiring an increase in dictionary size. However, there is limited

research on the effectiveness of all these approaches in dealing with out of vocabulary words (OOV).

Words are considered to be out of vocabulary if the system is built without being exposed to them.

Such words are highly prevalent within conjunctively written languages which include Shona.

This research had two broad aims. First, it seeks to establish the way in which developers of spell

checkers have addressed the question of out of vocabulary words within Southern Bantu Languages.

Second, it aims to develop a new method for conducting spell-checking of Shona that utilizes

morphological analysis to optimize their performance on out of vocabulary words.

A meta-narrative review of the literature on the spell-checking of conjunctively written agglutinative

languages was conducted. This revealed the lack of research focus on the question of how spell

checkers handled out of vocabulary words. Following this, a finite state transducer based

morphological analyser for Shona was developed. Verbs, nouns, and pronouns were prioritised for

inclusion in the morphological analyser due to their complexity and relative prevalence. This

morphological analyser is called Morphological Analysis of Shona using Knowledge and Observations

(MAShoKO). A spell checker for Shona which checks for the validity of Shona spellings in two phases

was built based on MAShoKO. It starts with a dictionary lookup and then follows this with a

morphological analysis for OOV words. OOV words that are not morphologically well formed are

flagged as invalid, whilst those that conform with Shona morphology are accepted. This spell

checker’s performance was then tested against a character trigram language model (CTLM) based

spell checker.

The MAShoKO based spell checker outperforms the CTLM spell checker on OOV words for the parts

of speech that were encoded into it. However, it does not perform as well on those words whose

structure is not encoded in the morphological analyser.

The study concluded that morphological analysis is effective for increasing the effectiveness of spell

checkers to handle out of vocabulary words in conjunctively written agglutinative languages. This,

however, requires that all the parts of speech be adequately encoded in the morphological analyser.

vi | P a g e

Pfupikiso

Tsvakiridzo ino ine chinangwa chekuongorora nzira dzinoshandiswa nevagadziri vezviperengeso kana

kuti zvirongwa zvinobatsira vanyori kutsvaga mazwi asina kunyatsoperengwa zvakanaka mumitauro

yekumaodzanyemba kweAfrica inodaidzwa kuti maSouthern Bantu Languages (SBL). Mitauro

yeVanhu vekuMaodzanyemba (MVM) iyi inoshandisa nzira dzekunyora mazwi dzinobatanidza

zviumbamazwi zvakasiyana-siyana pakunyora kwezwi roga roga. Nokudaro hazvikwaninisiki kuti

mazwi ose anoumbika mukutaura nokunyora aiswe muduramazwi. Tsvakurudzo ino inoedza Kukunda

dambudziko rekugona kuziva mazwi kwawo angaumbwa mukutaura kana kunyora asi iwo asiri

mumatura emazwi anoshandiswa kugadzira zviperengeso izvi. Mitauro yeSBL (MVM) ndeimwe

yemitauro inodaidzwa kuti maagglutinative languages. Izvi zvinoreva kuti mazwi mazhinji emitauro

iyi anoumbwa nezviumbamazwi zvakawanda uye zvinogona kunyatsopatsanurwa. Pamusana

pechikonzero ichi, hazvigone kuti kuunganidzwe duramazwi rine mazwi ose angawanikwa

mumutauro werudzi urwu. Nokudaro kunofanira kutsvagwa imwe nzira yekuti vagadziri vezvirongwa

zvinobatsira kuperengera zvigone kuziva mazwi anenge akanyorwa zvakanaka chero zvazvo asina

kumboonekwa muduramazwi rakashandiswa kugadzira chiperengeso chacho. Tsvakurudzo ino

yakatanga nekuongorora nzira dzakamboshandiswa nevamwe vagadziri vezvirongwa zvekuperenga

kuti vakunde dambudziko irori. Zvakawanikwa mutsvakiridzo ino ndezvekuti mamwe mabasa ose

akaitwa nevamwe aiwanzosimbirira pakuwana nzira dzekuvandudza mazwi ari mumaduramazwi

nechakare, nekushandisa nzira dzekugadzira mazwi angawanikwa mumutauro wavanenge

vachishanda nawo. Izvi vanozviita nekugadzira zvirongwa zvinogadzira mazwi angawanikwa

muduramazwi

Donzvo rechipiri retsvakurudzo ino nderekugadzira nzira itsva dzingashandiswa kuita kuti

zviperengeso zvigone kukwanisa kuziva mazwi asiri mumaduramazwi azvo. Tinogadzira

chiperengeso chinoshandisa nzira yekuongorora maumbirwo emazwi tichishandisa nzira inodaidzwa

kuti Morphological Analyser for Shona based on Knowledge and Observations (MAShoKO).

Mashandiro echiperengeso ichi anoenzaniswa nemashandiro echimwe chiperengeso chakaumbwa

nenzira yakashandiswa pane rudzi rweChiZulu. Zvinoshamisa ndezvekuti mashandiro ezviperengeso

izvi haana kunyanyosiyana - izvi zvinoonekwa pakugona kwazvinoita kupenengura mazwi ari

mumaduramazwi azvo pamwechete neayo asimo mumaduramazwi azvo. Izvi zvinoshamisa

zvakabuda mutsvakurudzo iyi zvinoratidza kuti nzira yekushandisa zvidimbu zvinoumba mazwi

kugadzira chiperengeso chemutauro wese zvawo werudzi rwemaSBL, iyo inoshandisa mhando

dzekunyora dzinobatanidza zviumbamazwi, inokwanisa kubatsira kuti zviperengeso

zvinonyatsoshanda mumitauro iyi zvigadzirwe nekukasika. Chiperengeso chakaumbwa

mutsvakurudzo ino chakashandisa semienzano yacho mazwi emhando dzinoti mazita, zviito

vii | P a g e

nezvirevamwene. Mubvunzo wasara uchiri kuda mhinduro ndewekuti zviperengeso zvakadai

zveMVM zvingavandudzwa sei kuti zvishandewo kupenengura mazwi asiri muduramazwi uyezve ari

emhando dzemazwi dzisina kushandiswa semienzano yekugadzirisa chiperengo cheChiShona icho

chatakabuda nacho mutsvakiridzo ino.

viii | P a g e

List of Abbreviations

Abbreviation Meaning

ACL Association of Computational Linguistics

ACM Association of Computing Machinery

ADR Action Design Research

ALLEX African Languages Lexical Project

AR Action Research

CL Computational Linguistics

CS Computing Science

CTLM Character Trigram Language Model

CV Consonant Vowel

ix | P a g e

Abbreviation Meaning

CWAL Conjunctively Written Agglutinative Language

CWSBL Conjunctively Written Southern Bantu Languages

DGS Duramazi Guru reChiShona

DGS A Descriptive Grammar of Shona

DSR Design Science Research

DSRM Design Science Research Methodology

DSRPM Design Science Research Process Model

DWAL Disjunctively Written Agglutinative Language

FN False Negative

x | P a g e

Abbreviation Meaning

FP False Positive

FSA Finite State Automata

FST Finite State Transducer

FV Final Vowel

HLT Human Language Technologies

HMM Hidden Markov Chain Model

IEEE Institute of Electrical and Electronic Engineers

IS Information Science

IT Information Technology

xi | P a g e

Abbreviation Meaning

L1 First Language

L2 Second Language

LC Leipzig Corpus

MAShoKO Morphological Analysis of Shona using Knowledge and Observations

NEG Negation

NLP Natural Language Processing

OC Object Concord

OCR Optical Character Recognition

OOV Out of Vocabulary Words

xii | P a g e

Abbreviation Meaning

PADR Participatory Action Design Research

PAP Personal Absolute Pronoun

PRP Personal Reflexive Pronoun

RAMESES realist and meta-narrative evidence synthesis

RQ1 Research Question 1

RQ2 Research Question 2

RQ3 Research Question 3

RQ4 Research Question 4

SBL Southern Bantu Language

xiii | P a g e

Abbreviation Meaning

SC Subject Concord

SDRM System Development Research Methodology

SDSM Soft Design Science Methodology

TAM Tense, Aspect, Mood

TN True Negative

TP True Positive

WALS World Atlas of Language Structures

xiv | P a g e

List of Tables

Table 2.5.1- Confusion Matrix - Summarising methods to evaluate spell checkers 29

Table 2.8.1 – Shona Alphabet – Letters and Diagraphs used in Shona orthography 35

Table 2.8.2 - Shona Noun Morphology .. 39

Table 2.8.3 - Shona Verb Slot system - according to Mberi ... 40

Table 2.8.4 Example verbs based on Mberi’s Shona Verb Slot System ... 43

Table 2.8.5 Examples of intensification by appending the suffix -sa ... 44

Table 2.8.6 - Examples of reduplication of adjectives .. 45

Table 2.8.7 - Examples of reduplication of Demonstratives ... 45

Table 3.4.1The Design Science Methodology Research (DSRM) ... 54

Table 3.5.1 - Results of the mini experiment demonstrating Google Translate's limitations with

utilising the morphology of Shona to inform its translations .. 58

Table 3.5.2 - Search terms used to search for literature .. 64

Table 3.7.1 Pseudocode for Shona Tokenizer ... 81

xv | P a g e

List of Figures:

Figure 2.2-1 Research Context.. 14

Figure 2.9-1 - Generic form of conjunctively written agglutinative words .. 49

Figure 3.5-1Research territory map .. 63

Figure 3.5-2 -Flow diagram for the meta-narrative review process .. 66

Figure 3.5-3 Network analysis of the key researchers on spell checking for CWSBLs 67

Figure 3.5-4 Approaches to Spell Checking for CWSBLs ... 69

Figure 3.6-1 Use Case Diagram for MAShoKO ... 74

Figure 3.7-1 Flow Diagram for MAShoKO Spell Checker .. 76

Figure 3.7-2- UML Sequence Diagram for MAShoKO Spell Checking Module 77

Figure 3.7-3- MAShoKO Class Diagram ... 79

Figure 3.7-4 - - Finite State representation of Mberi's 13 slot representation of the Shona Verb 82

Figure 4.5-1-Screenshort of the Program "10 Compare MAShoKO to CTTLM" before a file is opened

 .. 91

Figure 4.5-2-Screenshort of the program after the test file has been opened .. 91

Figure 4.5-3 - Screenshot of the comparison program after spell checking the test document 92

Figure 5.2-1- Comparison of the performance of the two spell checkers on various categories of

Shona words .. 94

Figure 5.3-1-Specificity of the two spell checkers on various categories of Shona words 95

xvi | P a g e

Figure 5.4-1- Precision on various categories of Shona words ... 95

Figure 5.5-1 - Negative Predicted value on various categories of Shona words 96

Figure 5.6-1-Spell checker accuracy for various categories of Shona words 97

Figure 5.7-1-F1 Scores foe the two spell checkers across different word types 97

Figure 6.4-1 Distribution of Categories of Word correctness within the sample of LC used to evaluate

the spell checkers .. 105

Figure 0-1- Google Translate's translation of the Shona verb “famba” (walk) to English 165

Figure 0-2- Google Translate's translation of the Shona verb "ona"(see) to English 165

Figure 0-3- Google Translate's translation of the Shona verb "anofamba" (s/he walks) to English ... 166

Figure 0-4- Google Translate's translation of the Shona verb "anoona"(he sees) to English 166

Figure 0-5 - Google Translate's translation of the Shona verb "haafambe" (s/he does not walk) to

English .. 166

Figure 0-6 - Google Translate's translation of the Shona verb "haaone" (s/he does not see) into English

 .. 166

xvii | P a g e

List of Code snippets:

Listing 5.4-1 – Convert PDF to Text .. 88

xviii | P a g e

Table of Contents

The Approval page: .. i

DECLARATION .. ii

Acknowledgement ... iii

Abstract: .. v

Pfupikiso .. vi

List of Abbreviations ... viii

List of Tables ... xiv

List of Figures: .. xv

List of Code snippets: ... xvii

Table of Contents ... xviii

Chapter 1: Introduction ... 1

1.1. Topic and Context ... 2

1.2. Focus and Scope ... 3

1.3. Relevance and Background ... 3

1.3.1. Relevance .. 3

1.3.2. Background ... 4

1.4. Problem Statement .. 8

1.5. Research Objectives and Questions .. 9

xix | P a g e

1.5.1. Objectives ... 9

1.5.2. Research Questions: .. 9

1.6. Significance of the Study .. 10

1.7. Approach and Methods ... 10

1.8. Assumptions .. 11

1.9. Summary and organisation of the remainder of the study .. 11

Chapter 2 - Literature Review ... 13

2.1. Introduction ... 13

2.2. Context to terms and concepts .. 13

2.3. Spell Checkers .. 14

2.4. Language ... 14

2.4.1. Sentences ... 15

2.4.2. Words .. 15

2.4.3. Morphemes ... 17

2.4.4. Language Typology .. 20

2.5. Language Technology ... 23

2.5.1. Spelling Errors and Spell Check types .. 23

2.5.2. Evaluation Metrics for Spell Checkers ... 25

2.5.3. Language Models .. 29

xx | P a g e

2.6. Morphological Analysis .. 31

2.6.1. Finite State Automata.. 31

2.6.2. Finite State Transducers .. 32

2.6.3. Syllabification ... 33

2.7. Two level Formalism .. 33

2.8. Shona Grammar .. 34

2.8.1. Shona Orthography ... 34

2.8.2. Noun Morphology ... 36

2.8.3. Verb Morphology .. 39

2.8.4. Other Parts of speech .. 44

2.8.5. Summary of Shona Morphology ... 47

2.9. Synthesis of concepts .. 47

2.10. Chapter Summary ... 49

Chapter 3 - Research Methodology .. 50

3.1. Introduction ... 50

3.2. Research Methodologies for Computing Science ... 50

3.3.1. Types of DSR .. 52

3.3. Methodology Selected... 53

3.4. DSRM ... 54

xxi | P a g e

3.5. Step 1: Problem Identification and motivation ... 54

3.7.1. Introduction ... 55

3.7.2. Method .. 60

3.7.3. Results ... 65

3.7.4. Discussion ... 69

3.7.5. Summary of Meta-narrative review .. 70

3.6. Step 2: Define the objectives for a solution .. 70

3.7.6. Step 3: Design and Development .. 73

3.7. Step 4: Demonstration ... 84

3.8. Step 5: Evaluation ... 84

3.9. Step 6: Communication ... 84

3.10. Chapter Summary ... 85

Chapter 4 - Materials and Methods used to demonstrate and evaluate the solution 86

4.1. Introduction ... 86

4.2. Data Sets - Change to method for collecting data ... 86

4.3. Data Pre-Processing - change to method for pre-processing data ... 87

4.3.1. Extract Text from Dictionary .. 87

4.3.2. Extract List of words from Dictionary .. 88

4.3.3. Extract Word List by part of speech ... 89

xxii | P a g e

4.3.4. Get text data from Leipzig Corpus .. 89

4.4. Experimental Setup - Change to method to evaluate spell checkers 89

4.4.1. Overview ... 89

4.4.2. Evaluation ... 90

4.5. Conducting the comparative spell checking experiments ... 90

4.6. MAShoKO and CTLM Source Code .. 92

4.7. Reliability and Validity ... 92

4.8. Chapter Summary ... 93

Chapter 5 - Results .. 94

5.1. Introduction ... 94

5.2. Recall .. 94

5.3. Specificity ... 94

5.4. Precision .. 95

5.5. Negative Predicted Value.. 96

5.6. Accuracy ... 96

5.7. F1 Score .. 97

5.8. Description of the results .. 98

5.9. Chapter Summary ... 98

Chapter 6 - Discussion .. 99

xxiii | P a g e

6.1. Introduction ... 99

6.2. Overview ... 99

6.3. Limitations .. 99

6.4. Performance of Spell Checkers ... 100

6.4.1. MAShoKO outperforms CTLM on Lexical Recall and matches it on Precision 101

6.4.2. Higher accuracy on MAShoKO .. 102

6.4.3. Poor Error Precision .. 102

6.4.4. Lower Error Recall.. 102

6.4.5. The incidence of foreign words in LC .. 102

6.4.6. Handling of Borrowed Words ... 105

6.4.7. Handling of Borrowed Words ... 105

6.4.8. Handling of the nyn’ phoneme by MAShoKO ... 106

6.5. Implications for the development of spell checkers for CWSBLs 106

6.6. Closing Comments on Morphological Analyser based spell checkers 107

6.7. Chapter Summary ... 107

Chapter 7- Summary and Conclusion ... 108

7.1. Introduction ... 108

7.2. Overview ... 108

7.3. Review of Previous Approaches ... 108

xxiv | P a g e

7.4. MAShoKO based Hybrid Spell checker ... 109

7.5. Possible Future Directions .. 109

7.6. Conclusion .. 110

References ... 113

Appendix 1 – Code Listings ... 125

Listing 1 - Finite State Automata – using Bernd Klein’s code ... 125

Listing 2 - ShonaVerb.py : Morphological Analyser Shona Verbs ... 126

Listing 3 – ShonaNoun.py : Morphological Analyser for Shona Nouns .. 138

Listing 4 - Finite State Automata – using Bernd Klein’s code ... 157

Appendix 2 – Results of Mini Experiment on limitations of Google Translate 165

Appendix 3 – Sample Data – CTLM versus MAShoKO based spell checker results 167

1 | P a g e

“If you talk to a man in a language he understands, that goes to his head.

If you talk to him in his language, that goes to his heart”

Nelson Mandela.

Chapter 1: Introduction

The use of digital language aides by professional academic writers is extensive for both first language

(L1) and second language (L2) English and German speakers (Schcolnik, 2018). Whilst a different

study found that the users of such tools report having mixed feelings about their intrusiveness, they

nonetheless lauded their utility in the writing process. (Ching, 2018). Despite their reported value,

such tools are not available for all of the world’s languages (Neubig, et al., 2020). The situation is

more pronounced for those languages spoken on the African continent (Mabuya, Ramukhadi, Setaka,

Wagner, & Zaanen, 2020). Some work has been done on a few African languages, but it has been

slow and has only affected a limited number of languages. Some of the most extensive of this has

been on the South African indigenous languages (Moors, Wilken, Calteaux, & Gumede, 2018).

However, as will be shown later, this work has not adequately addressed the question of how spell

checkers that have been produced as part of this work perform in the out of vocabulary (OOV)

context. The phrase out of vocabulary is widely used in the speech recognition community and it

refers to those words that are not included in the training and/or development of a system (Creutz, et

al., 2007; Nijat, Hamdulla, & Tuerxun, 2019; Yang, Zhu, Sachidananda, & Darve., 2019). As a result,

these words may not be correctly processed by such a system. This research aims to close this gap by

investigating the development of a spell checker that is optimised with the capability to correctly

identify and suggest previously unseen words for Shona, one of the languages spoken in Zimbabwe,

for which there is no extant spell checker or corrector.

The rest of this chapter is organised as follows: Starting with a broad overview of the topic and

context of the study, the background of the study as well as its relevance and significance are then

presented. This is followed with the statement of the problem. A section on the research questions and

objectives then follows. The nature of the research is described in the next section leading into a brief

section covering the assumptions, limitations, and delimitation of the study The final section

summarises this chapter and provides an overview of the rest of the study.

2 | P a g e

1.1. Topic and Context

The existence of appropriate language technology tools like spelling and grammar checkers is of

critical value for the development of all language communities. This is because they enable the use of

these languages in the digital domain. The digital world is increasingly becoming the locus of most

human communication (Twenge & Spitzberg., 2020; Venter, 2019) Tools of equal quality and ability

do not exist for all language types and even individual languages (Joshi, Santy, Budhiraja, Bali, &

Choudhury, 2020). Agglutinative languages such as Shona, a member of the Southern Bantu

Language (SBL) family, are one example of a language group that is inadequately supported by

modern applications like Microsoft Word and Google Translate. Like many agglutinative language

families, the words in SBL are formed from a relatively small set of building blocks, called

morphemes, through repeated prefixing and suffixing, a feature referred to as having a highly

productive morphology. This aspect makes the creation of an exhaustive dictionary for them

impossible as a new word can be formed by adding an additional affix to any other pre-existing entry.

The simplest way to approach spell checking is to compare every word to the entries in a dictionary.

Since it is not possible to have a dictionary of all words in an Agglutinative language, such static

dictionary-based approaches for spell checking are generally of poor quality (de Schryver & Prinsloo,

2004). To remedy this, some existing spell checkers for these difficult languages use various

approaches to enhance the size of the dictionaries (Prinsloo & Schryver., 2004). These methods have

had some relative success but still suffer from the challenge of not being able to address out of

vocabulary words. More sophisticated approaches utilise a data driven approach to the identification

of misspelt words. This is done in two broad steps. First a language model is built. In most cases this

is a statistical representation of how words are formed, however it can take other forms. The second

step is to compare words in a document to the language model. Only words that have a high

probability of being generated by the language model are accepted as valid. At least one spell checker

or an SBL has used such a method. Real-world evaluation of this spell checker demonstrated the

shortcomings in its performance with respect to OOV (Keet & Khumalo, 2017). This thesis aims at

addressing this shortcoming by developing a morphological analysis based approach to the spell

checking of Shona. This approach enhances dictionary lookup with syllabification and morphological

analysis to perform spell checking of Shona. Morphological analysis, which breaks down a word into

its smallest “meaning bearing units” that are referred to as morphemes, aims to optimise the

capability to identify and suggest OOV words as corrections for misspelt words (Seidenberg &

Gonnerman, 2000). Syllabification is the process of breaking down a word into its constituent

syllables and can be utilised by the morphological analyser to parse valid Shona words.

3 | P a g e

1.2. Focus and Scope

At the time of registering this research project, the aim was to study language models for the Southern

Bantu languages. The focus and scope of the study was narrowed from that of addressing this question

after some initial work had been carried out on the original question. This study is now focused on

the development of a computational method to address the spell checking of highly productive

agglutinative languages. The particular emphasis on their performance on OOV words. More

specifically, this study addresses the case of Shona. Shona is an SBL of more than 10 million native

users (David M, Simons, & Fennig, 2021). The research will be conducted through the investigation

of the use of morphological analysis to increase the ability of spell checkers to correctly identify OOV

words.

1.3. Relevance and Background

1.3.1. Relevance

The right to communicate in one’s own mother tongue is increasingly being recognised and asserted

(Milambiling, 2018; De Varennes, 2017). Most communication now takes place in the digital realm.

The key to enabling mother tongue communication is the availability of appropriate supporting tools

and technologies to enable the unhindered use of all the world’s languages. The SBL in general, and

Shona in particular, have limited language support in modern technologies. This has the effect of

hindering their frictionless use on digital devices (Drake, 2019; Frischmann, 2016). This means that

even though one can use existing tools and technologies to process these languages, this requires

significant effort on the part of the user. For example, the default mode is that all Shona words are

marked as incorrect. A user must thus either add every word that they use into the tool’s custom (or

user defined) dictionary at least once per word or they must switch off the proofing tools whilst using

it. Contrast this with the situation for languages such as English. In this case the language tools work

so well that users largely trust their suggestions. They also have a comparatively lower need to add

unrecognised words into their custom dictionaries. In fact, proofing tools are so well integrated into

the document authoring and other communication tools that they are only noticed when they do not

work well or are absent due to some other fault.

There have been some spell checkers developed for the South African SBLs (Grobbelaar & Kinyua,

2009; Prinsloo D. & de Schryver, 2003; Prinsloo & Schryver., 2004; Prinsloo & Eiselen, 2005; Bosch

& Eiselen, 2005). However, these developments have not benefited any of the other related languages.

An analysis of the utility of one of these spellcheckers through the “evaluation of its effect on the

intellectualisation of isiZulu '' found poorer performance on OoV words as one of the key limitations

4 | P a g e

of such existing tools (Keet & Khumalo, 2017). Several valid words which did not exist in any of the

language’s dictionaries had been added to the spell checker’s lexicon by its users. This problem of

OoV words is important for agglutinative languages with highly productive morphologies. This is

because the likelihood of encountering such words in real world scenarios is high, as was previously

highlighted. Whilst (Keet & Khumalo, 2017) also report that their tool was able to recognise some

previously unseen words, the extent to which it could do this is not quantified. There are also no

comparative studies showing how other spell checkers cope with this specific problem.

One of the key digital tools used to communicate these days is the mobile phone (de Bruijn &

Brinkman, 2018). Two tools offer similar functionality to spell checkers on these devices. These are i)

built-in auto-correctors that are native to each mobile phone platform and ii) third party-built

keyboard applications (Vertanen, et al., 2019). A high-level analysis of online reviews of the latter for

some SBLs, including Shona, shows that the issue of “missing words'' is a recurring theme in the user

feedback. This suggests a need for an alternative paradigm to address the spell-checking issue for

these languages. This thesis aims at addressing this problem by developing a novel approach to the

correct identification as well as the generation of suggestions for corrections of previously unseen

words using a combination of a statistical as well as a rules based morphological analysis methods.

1.3.2. Background

At a high level, the problem is that there is no useful Spell checker or auto-corrector for Shona. This is

despite the apparent vitality of the language as well as the clear need for such a spell checker. Let us

address language vitality before we consider the usefulness of a spell checker. Language vitality refers

to the extent to which a language is used by native speakers and other communities (Fishman, 1991).

A vital language is one that has widespread usage in various fields of human endeavour. Shona has

both a large speaker population and is sustained by institutions beyond the home and community

(David M, Simons, & Fennig, 2021).

In this thesis a spell checker is considered to be useful if it can correctly identify misspellings when it

is used in the real world. For a language like Shona this means that, among other things, such a spell

checker needs to be able to work well with and for words that it encounters for the first time when it is

in use. No spell checker with these features has been documented for Shona at the time of initiating

this research. There are possibly several reasons why this could be the case. Some of these have to do

with the nature of the language. Others may have to do with the availability of willing and able

developers for such tools.

5 | P a g e

If we consider the nature of the language, we observe the following: i) Shona is an agglutinative

language and ii) it has a conjunctive writing system. Being an agglutinative language means that its

words are made up of several clearly identifiable meaning bearing units called morphemes. These

morphemes can be combined to form new words, whose meanings can be easily deduced from that of

the constituent components. A conjunctively written agglutinative language is one in which the

written form of the words tends to combine these morphemes into one orthographic word rather than

split them into separate ones. An orthographic word is the word as it is written in text. Some

agglutinative languages use a disjunctive writing system. In such a system some morphemes forming

the morphological word are written as separate orthographic words. More detailed definitions for both

orthographic and morphological words will be given in Chapter 2. For now it suffices to state that

morphological words are words that are defined based on the way that they are formed.

Apart from being agglutinative and having a conjunctive orthography, Shona has a highly productive

derivational and inflectional morphology. Derivational morphology refers to the way that languages

form words with different syntactic categories or meanings than the roots from which they are derived

from through the use of affixes (Bauer, 2008). An example of this can be seen in the creation of the

noun <mutyairi> (driver) from the verb <tyaira> (drive) through the addition of the derivational

prefix <mu> and the substitution of the terminal vowel <a> with <i>. Inflectional morphology

modifies existing words to fit specific contexts without changing the core meaning of the word

(Marzi, Blevins, Booij, & Pirrelli, 2020). Noun class prefixes perform this function in Shona as can be

seen with the words <mukomana> (boy) and <vakomana> (boys). Here, the substitution of the prefix

<mu> with <va> only changes the number of the noun, but the meaning of the noun as referring to

“human, young male children” is retained. A language is highly productive when the “number of

words that can” be formed from the morphemes “is large” (GÜNGÖR, GÜNGÖR, & ÜSKÜDARLI,

2019). Since Shona is agglutinative, conjunctively written and has a highly productive derivational

and inflectional morphology the number of possible words in the language is very high. This situation

is similar to that of the other conjunctively written SBLs.

Despite its high levels of vitality, Shona is considered to be a less resourced language in terms of

language technology. This also contrasts with the fact that it has been the subject of a lot of well

documented scholarly work. Among these is the highly influential Report by Doke which led to the

formal adoption of the name Shona as the identifier for the group of related dialects spoken on the

Zimbabwean plateau (Doke, 2005). Since then, a number of texts expounding various aspects of the

language including its grammar have been written. These include comprehensive grammars by the

well-respected Bantu grammarian George. Fortune (Fortune, 1985) as well as a more recent one by a

number of largely first language Shona speaking academics (Mpofu, Ngunga, Mberi, & Matambirofa.,

6 | P a g e

2013). Furthermore, in the 1990s, the language was one of the key focuses of the African Languages

Lexical Project (ALLEX) which operated at the University of Zimbabwe and developed a number of

monolingual dictionaries for the language as well as a 2 million word corpus (Grønvik & Chimhundu,

1998).

A report by the ALLEX project in June of 1996 noted that the corpus that they had developed should

“ideally have a Shona (and soon an Ndebele) parser” as well as a ‘Shona (and soon an Ndebele) spell

checker” (Grønvik O. , 1996). The language of that report is very hopeful, and there is an air of

imminence that is communicated in the transcript. It is now almost 25 years since that report was

penned. No “parser” or “spell checker” for Shona has been realised in this time frame. At the time of

the report’s writing, Shona was a leader in the field of corpus linguistics. It boasted the largest corpus

among the SBLs at 2 million words. Since then, it has lost this leadership position to the other

languages of the sub-region. These have since overtaken it in the development of tools that are

enabled by the corpora that they compiled years after the Shona Corpus was completed (Khumalo,

2017).

The question can be asked as to why Shona lost its leadership position? Why did it fail to realise the

promise of 1996 when it was on the cusp of a major transformation? It appears as if the answers to

these are linked to two main problems. The first problem relates to the availability of people with a

software engineering/development background who were willing and able to work on the

development of the parser(s) and spell checkers mentioned above. For all its successes, the ALLEX

project appears to not have attracted sufficient local interest in the computing faculty of the University

of Zimbabwe, where it was based (Grønvik O. , 1996; Grønvik & Chimhundu, 1998). Almost all the

technical artefacts that it produced were developed by members of the team that were not from

Zimbabwe. When these members left, they took their expertise and interest in the development of the

tools that had been anticipated with them. The evidence of this is found in a follow up report written

in 1998 in which Chimhundu and Grønvik report that whilst there was some interest expressed in

getting the local MA and PhD students to take over the morphological analyser that had been

developed “to date tangible steps have not been taken” (Grønvik & Chimhundu, 1998).

In their report on the status of Human Language Technologies (HLTs) for South African Bantu

Languages produced in 2010, (Grover, Van Huyssteen, & Pretorius, 2010), found that the

development of HLTs for the various languages were at different levels. Specifically, they found that

isiZulu had the highest activity, followed by the other languages. They then proposed three

explanations for these variances in the development of HLTs for the South African Bantu languages.

The first one was to do with the availability of expert knowledge in both linguistics and HLTs. The

7 | P a g e

second one was to do with the availability of data whilst the third one was due to market forces.

Looking at these three, it is clear that each one played a role in the development of the situation

described by (Grønvik & Chimhundu, 1998) above. Arguably the issue of the availability of expert

knowledge in both linguistics and HLT could have been easily remedied as both types of expertise are

known to have been available in the University at the time. The second issue concerning the

availability of data was one that the ALLEX project itself was addressing, so it should not have been a

factor. The third factor is more difficult to assess for the period in question, but it is known that there

is now market interest in HLTs for indigenous languages. This is evidenced by the availability of

some tools, albeit rudimentary ones, that attempt to address this need on cell phones.

A second, and much more important problem that has stalled the development of the much needed

and anticipated tools is the surprising difficulty of the whole enterprise. Spell checking is a

deceptively simple looking problem. The spell checker program is meant to identify incorrectly spelt

words in a given text and then propose a ranked list of correct candidate words (Damerau, 1964;

Levenshtein, 1966; Kukich, 1992). That second part of the process is actually a spell corrector.

Despite this, the two components are usually found together. This has led some researchers to include

both pieces of functionality in their definition of the spell checker (Mohammed & Abdellah, 2018)

Given this simple description of the problem, a reasonable assumption to make is that the dictionary

lookup method should be able to solve this problem. Dictionary lookup-based spell checking has a

reasonable level of effectiveness for languages such as English and other less morphologically rich

languages. Unfortunately, it does not work as well for a language with a complex morphology like

Shona as previously explained. This was established in experiments that were done for isiZulu and

other Southern Bantu Languages (SBLs) when the first and second generation of spell checkers were

being developed for the South African SBLs (de Schryver & Prinsloo, 2004).

Once the limitations of dictionary lookups for spell checking conjunctively written languages like

Shona researchers were understood, researchers started seeking alternative solutions. The majority of

this work has been done on the related SBLs. Most of it has taken a rules based approach (Prinsloo &

Schryver., 2004; Prinsloo D. & de Schryver, 2003; Grobbelaar & Kinyua, 2009). The key aim has

been that of augmenting the sizes of the dictionaries to be used in the actual spell-checking task. This

spell checking is still done via a dictionary lookup. At least one study took the alternative data driven

approach to the problem (Ndaba, Suleman, Keet, & Khumalo, 2016).

The data driven approach produced some promising results, leading the authors to conclude that a

data-driven approach toward spellchecking is indeed feasible for at least isiZulu, and, by extension of

the approach that is essentially language-independent, all Bantu languages (Ndaba, Suleman, Keet,

8 | P a g e

& Khumalo, 2016). However, a subsequent study found that the system failed to identify some valid

words that did not exist in the language’s dictionaries during real world use cases (Keet & Khumalo,

2017). Furthermore, there has not been a significant uptake of this approach for other languages - at

least not in the published literature. It is possible that this could be because, as they also conclude, the

accuracy of such a spellchecker depends on the text corpus used for training the model as well as on

the text document or corpus with which it is tested (Ndaba, Suleman, Keet, & Khumalo, 2016). Such

good quality gold standard corpora are not readily available for all languages, and even where they

exist, many are not current. The same study showed poorer performance of the spell checkers when

used with older corpora.

The main concern of this research is on the performance of spell checkers on OOV words like those

encountered by (Keet & Khumalo, 2017)’s spell checker in real world usage. None of the other

studies report on the performance of their spell checkers in such contexts. However, based on the

description of the approaches that they take, it can be assumed that they would do equally badly. This

means that their usefulness in real world situations is not as good as they could potentially be, which

is a significant limitation. Previous work in spelling for SBLs was initially reported (Prinsloo &

Schryver., 2004; Prinsloo D. & de Schryver, 2003; Grobbelaar & Kinyua, 2009). This was followed

up by (Prinsloo & Schryver., 2004) who improved on their results by adding what they termed

clusters of circumfixes to generate additional words for their spell checker, whilst (Bosch & Eiselen,

2005) were also able to produce better results when they bolstered their dictionary look up with the

use of regular expressions for some morphological analysis. Their spell checker was able to recognise

words that did not exist in the lexicon. However, they noted that it could only make suggestions of

words that were part of the dictionary’s lexicon.

1.4. Problem Statement

This project addresses the problem of the correct identification of previously unseen correctly spelt

words. It also addresses the generation of accurate suggestions of previously unseen words in spell

checkers for conjunctively written agglutinative languages, using Shona as an example. A solution

which addresses this problem using a morphological analyser-based spell checker will be presented

and evaluated. This problem is an important one as spell checkers that do not address OOV words are

bound to have limited utility in real world settings for languages such as Shona. The likelihood of

encountering new words during the use of the spell checker is high, thus the need to be able to

correctly handle them. More importantly, there is currently no widely used spell checker for Shona, so

the development of any spell checker is a significant milestone in the digital development of the

language.

9 | P a g e

1.5. Research Objectives and Questions

The objective of this research study is to determine the effectiveness of using morphological analysers

to increase the performance of spell checkers on previously unseen words. This will be achieved

through the development and evaluation of a Morphological Analyser for conjunctively written

Southern Bantu languages such as Shona. This research objective can be further broken down into the

following sub-objectives:

1.5.1. Objectives

RO1. Determine the challenges encountered in the development of spell checkers that aim

to maximise the correct identification of OOV words for SBLs.

RO2. Determine the previous approaches utilised in the development of spell checkers that

aim to maximise the correct identification of OOV words for SBLs.

RO3. Design a morphological analyser for Shona.

RO4. Design a Shona spell checker that utilises morphological analysis and embedded

knowledge to optimise its performance on OOV words.

RO5. Implement the morphological analysis based spell checker.

RO6. Implement a basic character n-gram language model-based spell checker for Shona.

RO7. Evaluate the general performance of the morphological analysis-based spell checker

against a basic character n-gram model-based spell checker.

RO8. Evaluate the performance of the morphological analysis based spell checker for

Shona on OOV words against a simple character n-gram model.

1.5.2. Research Questions:

The research objectives will be addressed by answering the following research questions.

RQ1. What are the challenges with the previous approaches used to maximise the correct

identification of OOV words for SBLs?

RQ2. What are the approaches that have been utilised to develop spell checkers that aim to

maximise the correct identification of OOV words in SBLs?

RQ3. What is a good design for a morphological analyser that can correctly identify Shona

verbs and nominals Shona?

RQ4. What is a good design for a Shona Spell checker that utilises a morphological

analyser in order optimise its performance on OOV words?

10 | P a g e

RQ5. What is the overall performance of a Shona spell checker that utilises the

morphological analyser as well as knowledge of the language to develop a sub-word aware

spell-checking engine for Shona words across the most frequent word types?

RQ6. What is the performance of a morphological analysis based spell checker on OoV

against a simple character n-gram model?

1.6. Significance of the Study

There is currently no documented spell checker for Shona, which makes this study of great

significance to the language. Furthermore, this research will contribute a few key tools to both the

language and to the body of knowledge on spell checking for agglutinative languages. The key

contributions of this study are as follows:

1. The study will produce the first academically documented and research-based Spell Checker

for Shona.

2. It will also introduce a framework to evaluate the performance of spell checkers for

conjunctively written agglutinative languages on out of vocabulary or previously unseen

words.

3. A new method to perform spell checking through the utilisation of a knowledge-based

approach [checking of open syllables as well as permitted consonants] to identify misspelt

words based on their non-adherence to the language’s syllabic inventory will also be

introduced.

4. An improvement to the existing methods of utilising sub-words to determine the correctness

of words, especially those that do not exist in the dictionary will also be developed.

5. Finally, a method to utilize sub-words to propose correct words including those that may not

have been encountered in the training data will be introduced and utilised in the development

of a working spell checker and corrector.

1.7. Approach and Methods

This study was conducted through a combination of a detailed literature review as well as Design

Science. RO1 and RO2 required the determination of the previous approaches as well as the

challenges encountered in the development of spell checkers that aim to maximise their performance

on OoV words. These were addressed through an extensive meta-narrative survey on the development

of spell checkers for SBLs and other agglutinative languages. This entailed the identification of search

terms and the subsequent search for such literature. The resultant literature was then be filtered for

11 | P a g e

relevance before being subjected to analysis for key themes and issues. The resultant themes and

issues were then presented in the form of a systematic literature review of the development of spell

checkers for conjunctively written SBLs.

To satisfy RO3 a finite state transducer based morphological analyser for Shona was designed and

built. An appropriate grammar for Shona was then selected from the existing published grammars for

the language. The grammar rules were encoded into a finite state transducer which was then

incorporated into a spell checker for Shona in. This spell checker was designed and implemented to

fulfil RO4 and RO5 The morphological analyser can be used for two functions within the spell

checker. It can be used to check the validity of presented words. It can also be used to create

suggestions for misspelt words.

RO6 was met by developing a simple n-gram based spell checker and corrector, similar to the one that

is reported by (Ndaba, Suleman, Keet, & Khumalo, 2016). The performance of this spell checker on

previously unseen words was then compared against the performance of the Morphological Analyzer

based spell checker developed to meet the requirements of RO7 and RO8. The results of this

experiment will be tabulated, presented, and discussed.

1.8. Assumptions

This study is based on several assumptions. The first key assumption is that the grammars that are

available for the language provide an adequate description of the language for use in the development

of their computational morphological models. It is also assumed that the corpora used are

representative of the language’s current usage.

1.9. Summary and organisation of the remainder of the study

The rest of this thesis is set out as follows: Chapter 2 reviews the literature on spell checking as it

pertains to conjunctively written agglutinative languages and introduces the concepts and terms

covered in the thesis. Chapter 3 then discusses the methods used in Computing Science research and

provides justification for the use of the Design Science Research Methodology in this research. The

details of how each step of this methodology were applied in this thesis are also presented in this

chapter. In Chapter 4 the material and methods used to conduct the experiments reported in this study

are reported on. This is then followed by chapter 5 which is a presentation of the results of the

experiments that were conducted in this research. The presentation of these results is then followed by

12 | P a g e

a discussion and analysis of the results in chapter 6. Chapter 7 concludes this thesis with a summary

and some concluding remarks.

13 | P a g e

“Most controversies would soon be ended, if those engaged in them would first accurately define their

terms, and then adhere to their definitions.”

Tryon Edwards.

Chapter 2 - Literature Review

2.1. Introduction

It has been argued that human “language is inherently ambiguous” (Lebeaupin, Rauzy, & Roussel,

2017). This ambiguity which is partly caused by the multiple uses and meanings of words has also

been shown to make human communication more efficient (Piantadosi, Tily, & Gibson., 2012).

Despite this, ambiguity can be costly, especially in scientific literature (Fischhoff, 2013). It is thus

important that the language used in this domain is precise. The purpose of the present chapter is to

enable understanding of the terms and concepts that will be utilised in this thesis as well as to place

this study within the greater context of similar studies on spell checking for agglutinative languages.

2.2. Context to terms and concepts

This research is focused on spell checking of Shona in the OOV context. Figure 2.2-1 maps the

general setting within which spell checking for conjunctively written agglutinative languages

operates. First the problem of spell checking applies to a specific language. The focus of this thesis is

on conjunctively written agglutinative languages (CWALs). These will be fully defined in section

2.4.2. In these languages, as in all known human languages, the basic unit of speech or text is the

sentence. Such sentences are composed of words. Section 2.4.4 discusses the concept of words within

the CWALs. Words in CWALs can be further broken down in several ways. First, they can be

decomposed into their constituent morphemes using morphological analysis as described in section

2.6. Second, they can be broken down into short sequences of the characters from which they are

formed as covered in section 2.5.2. Third, for a language like Shona where every word is made up of

open syllables, each word can be broken down into the syllables from which it is formed.

Syllabification is described in section 2.6.3. Critically, a spell checker is tasked with the job of

evaluating whether any given word is a valid word in the language of the spell checker. Section 2.4.2

discusses the question of what constitutes a valid word before introducing other concepts related to

spell checking for CWALs.

14 | P a g e

Figure 2.2-1 Research Context

2.3. Spell Checkers

A spell checker is a piece of software that checks for the presence of incorrectly spelt words within a

text (Kukich, 1992). It may incorporate a spelling corrector, which suggests corrections for every

incorrect word encountered. Some types of spell checkers implement this functionality as an auto-

corrector, which, as the name implies, automatically selects the most probable candidate correction,

and uses it to replace the incorrectly spelt word. The definition of what constitutes a valid word in any

given language is a matter of continuing scholarly debate. For this reason, the next section provides a

cursory explanation for some linguistic ideas that pertain to the identification of what a word is and

how this affects the development of spell checkers for different language types.

2.4. Language

There are many kinds of languages in the world. Some of these, including programming languages,

are man-made and every aspect of them have precise specifications. This study is about human or

natural language, also referred to simply as language. (Sapir, 1921) defines language as “a purely

human and non instinctive method of communicating ideas, emotions, and desires by means of a

system of voluntarily produced symbols.” Another definition says that it is “a system of

communication based upon words and the combination of words into sentences.” (Eifring & Theil,

2015). Whilst it has some limitations, this is the definition that will be used in this research. Spell

15 | P a g e

checkers are designed to check the validity of words within human languages. One of the key

distinctions between artificial and natural languages is that natural languages do not have the same

level of formal specifications that artificial languages have. This poses some technical challenges for

the developers of rules-based NLP tools and the rules as will be discussed later.

2.4.1. Sentences

(Eifring & Theil, 2015)’s definition sees language as being composed of words and sentences and

these being the means of achieving communication. There is thus a need to clarify what sentences and

words are. Whilst the key focus in this thesis is the word, we start by looking at the sentence. The

Oxford Dictionary defines a sentence as “a set of words that is complete in itself, typically containing a

subject and predicate, conveying a statement, question, exclamation, or command, and consisting of a

main clause and sometimes one or more subordinate clauses.” In natural language processing, a sentence

has a deceivingly simple definition. According to (Grefenstette & Tapanainen., 1994) “sentences end in

punctuation”. However, as they also observe, determining which punctuation marks terminate sentences is

not a trivial matter. The spell-checking problem addressed here occurs at the individual word level, so

these challenges will have little or no bearing to the subsequent discussion. However, it is important to

note that a production scale spell checker should be able to differentiate words from sentences.

2.4.2. Words

A spell checker deals primarily in words. Developers of spell checkers need to understand what

constitutes a word in each language. Words have a much more complex definition than appears on the

surface. (Haspelmath, 2011) considers the question of what constitutes a word and identifies four

different criteria that could be used to decide on what a word is. These are the semantic,

orthographic, phonological and morphosyntactic criteria. When faced with the same question,

(Bejan, 2017) expanded these criteria into five categories by splitting the morphosyntactic into

morphological and syntactic criteria.

The Semantic word

(Packard, 2000) states that most traditional definitions of what a word is take the semantic or lexical

view. Quoting Sapir, they define a word as “the outward sign of a specific idea, whether of a single

concept or image or of a number of such concepts or images definitely connected into a whole”

(Sapir, 1921). However, they argue that the semantic word is only minimally useful, because reducing

concepts to their semantic primitives is a notoriously difficult exercise (Packard, 2000); hence the

16 | P a g e

need for other ways to define what a word is. Whilst more sophisticated NLP tools may need the

capability to identify semantic words, the spell checker discussed in this research does not require it.

The Orthographic or Graphemic word

The orthographic or graphemic word is the word as defined by writing conventions. In those

languages that use the Roman script, it is defined as a string of letters that are found between spaces

or punctuation marks in written text (Krause, 2012). This is the word that is found in written texts and

is the primary concern of this study. It is important to note that the orthographic word in most

languages is the result of convention. Language authorities determine how words should be written.

This idea will be discussed further in the section on writing systems.

The Prosodic word

(Dixon, 1977) introduced the concept of a prosodic or phonological word (Hildebrandt, 2015). This

refers to the word that is defined according to phonological properties of a given language in

accordance with the prosodic hierarchy hypothesis. A discussion of the prosodic hierarchy is beyond

the scope of this study. What is key to note is that one of the challenges that speaker-writers of any

given language have is to correlate the way that they speak the language and how it is written. Some

challenges with English spelling are to do with the way that the language’s orthography differs with

its prosody (Enderby, Carroll, Tarczynski-Bowles, & Breadmore, 2021).

The Morphological word

Anderson, quoted by (Packard, 2000), defines the morphological word as ‘a base together with the

expression of the [grammatical] categories appropriate for its part-of-speech class’. In the same

work, (Packard, 2000) provides a simpler definition which says that it is the “proper output of word-

formation rules in the language”. What is important to note here is that the morphological word in

this case presupposes the existence of some clear word-formation rules in each language. This means

that these rules can be automated and used both for the generation and validation of words in the

language. It will be shown later that the morphological word has great importance and significance for

languages like Shona in which the inventory of words is open and increasing due to the way that they

are formed.

The Syntactic word

https://paperpile.com/c/mqa46z/oV9OH

17 | P a g e

The definition for the syntactic word is even more dense than that for the morphological word. The

syntactic word is defined as “a form that can stand as an independent occupant of a syntactic form

class slot, in other words, a syntactically free form, commonly designated in the literature as X⁰”

(Packard, 2000). Syntacticians do not yet have a consensus as to the precise definition of what a

syntactic word is (Svenonius, 2018). Whilst higher order, context sensitive spell checkers may need to

be able to distinguish between syntactic words, the spell checkers that will be addressed in this study

do not need to meet this requirement as will be explained in section 2.5.1.

2.4.3. Morphemes

Regardless of how words are identified, they can be further analysed in several possible ways. One

such way is based on their building blocks, which are called morphemes or morphs. A morpheme is

the smallest meaning bearing unit of a word and a word may be made from one or more such

morphemes (Anderson, 2015). Morphemes can be divided into types. One set of morphemes are

called bound or free morphemes (Martini, 2016).

Free or unbound morphemes are those morphemes that can form valid words without being combined

with any other morphemes (Martini, 2016). An example of such a morpheme is “kind”. It cannot be

broken down to any other smaller meaning bearing unit and it is a valid word on its own. Bound

morphemes on the other hand cannot form valid words on their own (Martini, 2016). They can only

be used together with a free morpheme. For example, the morpheme “ness” in “kindness” cannot form

a valid word, but it changes the meaning of the word “kind” when it is appended to it. It will be shown

later that the spell-checking task for conjunctively written agglutinative languages can be made easier

if the morphemes that make up each word can be identified - since spell checking in these

languages can be viewed as morphological analysis, among other conceptualisations.

Roots and Stems

Bound morphemes play different roles within a language. One set of bound morphemes are what are

referred to as roots and stems of words. (Bakovic, 2003) defines these as follows: “(i) a stem is any

morphological constituent to which an affix may attach” and a root as “the innermost stem.” Roots

give the core meaning of the word. One way in which speaker-writers of Shona can identify valid

Shona words is through observing whether a given word includes a valid root or stem. Some

roots/stems can also be realised as free morphemes in some Shona dialects. For example, the root

“mbwa” (dog) is a complete word in ChiKaranga. Similarly, “she” (king/lord) is also a full word in

18 | P a g e

that dialect even though both morphemes require the stabiliser “i” to form valid words in the Zezuru

and other Shona dialects.

Affixes

A second set of bound morphemes are called affixes (Miti, 2006). Most languages have two types of

affixes, these being prefixes and suffixes. Prefixes are those affixes that can be appended in front of

word roots whilst suffixes follow word roots. Some other languages also have circumfixes and

infixes. Circumfixes are combinations of prefixes and suffixes that appear together (Hendrikse &

Mfusi, 2011), whilst infixes are those affixes that may be added to a root/stem of a word (Umar,

2020). Most Shona words consist of at least one affix and a stem. Even when the word is unknown,

checking to see if it contains a valid set of affixes attached to a valid root/stem can confirm its

correctness. The process of doing this is referred to as morphological analysis and will be discussed in

detail in section 2.6.

Derivational Morphemes

Affixes perform one of two key functions within words. They are either derivational or inflectional.

Derivational morphemes change the meaning or part of speech of the free morpheme whilst

inflectional morphemes provide additional grammatical meaning to the free morpheme (Tariq, et al.,

2020). For example, in Shona, noun prefixes are inflectional. Their primary function is to provide

information about the number and class membership of a specific noun. Thus, the prefixes “mu” and

“va” in the words “mukomana” and “vakomana” indicate that the first word is a singular noun whilst

the second one is a plural noun and that both of them refer to people.

Inflectional Morphemes

Shona verbs can be inflected by both prefixes and suffixes as in the following example:

“akazoendeswa”. Here the root/free morpheme “end” (go) is inflected by adding the prefixes “a” (first

person singular), “ka” (remote past tense) and “zo” (then) which carry the meaning “s/he eventually

did something in the remote past”. The suffixes “es” (causative mood) and “w” (passive mood) bring

the additional meaning that this was caused to happen to the passive subject of this verb, thus the full

word means “s/he was eventually caused to go → s/he was eventually taken [to some place]”

Nominalisation

19 | P a g e

It is also possible to nominalise a verb by appending specific prefixes and suffixes to it. For example,

the Shona noun “mutyairi” (driver) is formed by adding the prefix “mu” to the verb stem “tyair” (to

drive) and the terminal vowel “i”. Similarly, the verb stem “nyor” is transformed into the noun

“chinyoreso” (pen, lit. something to write with) by appending the noun prefix “chi” (inanimate single

object) and the causative verb extension suffix “es” together with the terminal vowel “o”.

Lemma

If a human speller wishes to look up the spelling of a word in a dictionary, they typically lookup for

the lemma in a dictionary. (Burchfield, 1985) defines a lemma as “a set of grammatical words having

the same stem and/or meaning and belonging to the same major word class, differing only in

inflection and/or spelling”. For instance the Shona words “rova”, “kurova”, “rohwa” and “kurohwa”

have the same lemma “-rova”. In the Shona dictionary, it is the lemma that is the headword in the

entry that carries the basic definition. The headwords therefore are not always full words, i.e.

inflected.

Lexical and Surface forms of words

(Bonami, Boyé, Dal, Giraudo, & Namer, 2018) assert that linguists distinguish between two types of

words, stating that “Those that constitute dictionary entries are usually called lexemes.” An

alternative definition holds that the lexical form of a word, refers to “a lemma (that also codes for

syntactical markings such as gender and number)” (Ralph & Lambon, 2001). Whilst these are the

basis upon which surface words are formed, this may not always be transparent in every language and

writing system.

Two examples can serve to illustrate the concept of a lexical word. The word “gava” (fox), when

pluralised becomes the word “makava” (foxes). Similarly, the word gudo (baboon) becomes makudo

(baboons) when in the plural. Linguists postulate that there is a process which is used to get from gava

to the expected regular plural form magava and then finally to the proper plural makava. This process

can be conceptualised as being the existence of a set of phonological rules which determines the

sounds that can follow each other. In the case of magava or magudo, these presumed rules change the

g sound to the k sound whenever these are preceded by the plural class marker ma. “Magava”, which

is not a real word in Shona, is the lexical or the analytical form of the word makava.

The surface form of a word is the string of characters as they are found in actual texts (Schütze, 1992).

For example, the surface form of the word “kindness” is the word itself. In the previous Shona

20 | P a g e

example of gava/makava, makava is the surface form of the word gava. Similarly, makudo is one of

the surface forms of the word gudo.

In the context of spell checking, it is necessary that they have the capability to correctly identify

surface forms of words even though these may not always be found in the dictionary. This may

require them to be able to deduce the surface forms from the set of lexical forms that may be available

within their lexicons.

2.4.4. Language Typology

A key question for the developers of NLP tools is the extent to which solutions developed for one

language can be transferred to other languages. The answer to this question can be obtained by

observing the ways in which the languages of the world bear similarities with one another. An

outcome of this method of inquiry is the identification of what are termed “linguistic universals”. As

(Miti, 2006; Greenberg, 1960) state, there are a number of such universals leading to the classification

of languages into various types - referred to as “language typology” (Kashyap, 2019). One of the

oldest topologies, which is of interest to this study and developers of NLP tools in general, is that of

morphological typology (Greenberg, 1960). This classifies languages based on how their

morphological words are formed.

If we consider the ease with which it is possible to separate the morphemes within the words of any

language, we come up with a classification of the world’s languages into three main groupings. These

three groupings are that of the 1. isolating, 2. agglutinative and 3. fusional languages (Greenberg,

1960). It has been shown that these categories correlate strongly with the difficulty to model a given

language, and thus to develop NLP tools for them (Gerz, Vulić, Ponti, Reichart, & Korhonen, 2018).

Isolating Language

Isolating languages are those languages in which every word is made of only one free/unbound

morpheme (Greenberg, 1960). There are no bound morphemes, so it is easy to identify the boundaries

of each morpheme in every word because it is the same as the word boundary. The task of conducting

spell checking for these languages is comparatively easier as they tend to have more fixed

vocabularies.

Agglutinative Languages

21 | P a g e

According to (Miti, 2006), agglutinative languages are those languages that on average have more

than one morpheme per word and where each of these morphemes is easy to identify. The morphemes

within agglutinative languages each also carry only one meaning per morpheme. Spell checking as

well as other language modelling tasks are more complex for the subset of the agglutinative languages

that utilise a conjunctive writing system rather than a disjunctive one.

Disjunctively versus Conjunctively written Agglutinative Languages

In some agglutinative languages, the morphological word does not correspond to the orthographic

word. This is the case for languages such as SeSotho and SeTswana. In these languages bound

morphemes that belong to the same morphological word are written separately as if they are free

morphemes. For example, the morphological “word” “kea u rata” (I love you) is rendered as three

separate orthographic words. Contrast this with the Shona rendering of the same phrase which is

“ndinokuda”. In both “words” the morphemes “kea” and “ndino” have the exact same meaning - they

roughly translate to “I do <what the root says - in the present continuous tense>”. Similarly, the

morphemes “u” and “ku” both mean “you” whilst the morphemes “rata” and “da” both mean “love”.

The first form of writing is referred to as a disjunctive writing system whilst the latter is a conjunctive

writing system. Sotho is a disjunctively written agglutinative language (DWAL) whilst Shona is a

conjunctively written agglutinative language (CWAL). More specifically, it is a conjunctively written

Southern Bantu language CWSBL. CWSBLs are a subset of CWALs. It was shown by (de Schryver

& Prinsloo, 2004) that dictionary lookup based spell checkers are very effective for DWALs but they

perform dismally on the CWSBLs.

Fusional Languages

(Miti, 2006) further states that fusional languages are those languages which also have more than one

morpheme per word. However, unlike agglutinative languages, each morpheme may have more than

one meaning and syntactic role within the word. This category of language types is only included here

for completeness’ sake as they have no bearing on the rest of the work presented in this thesis.

Analytic Languages

An alternative way to classify languages is based on the degree of internal complexity of the words

(Aikhenvald, 2007). This classification places the world’s languages into two broad categories: one

for analytic languages and a second one for synthetic languages. The category of the analytic

22 | P a g e

languages coincides with that of the isolating languages. They are characterised by having words with

very little internal complexity.

Synthetic Languages

On the other hand, synthetic languages are those which have more than one morpheme per word. The

former categories of agglutinating and fusional languages all fit into this category. A third category of

polysynthetic languages is sometimes added to these groupings. In this system of categorisation,

Shona and other SBLs are synthetic languages.

Morphological Complexity

These above methods of morphological classification can be applied together to provide a richer

understanding of the complexity of given languages. They correlate quite well with an additional

concept of morphological complexity. According to (Pirinen, 2014), one of the key features of

morphological complexity is the average number of morphs per word which can be measured using a

morph-to-word ratio. Related to this first feature is morphs-per-morpheme. Then there is ‘the rate of

productive derivation and compounding that produces new ad hoc words and word forms that are

hard to predict using finite word lists’ (Pirinen, 2014). A language that has both features is considered

to be morphologically complex. According to all these criteria, Shona and other conjunctively written

SBLs are morphologically complex. This suggests that methods developed for less morphologically

complex languages may not be suitable for it as was reported in (Gerz, Vulić, Ponti, Reichart, &

Korhonen, 2018).

Summary position on words

The preceding linguistic discussion sought to clarify the concept of wordhood and how it impacts the

performance of spell checkers. This study is on the spell checking of Shona, a conjunctively written,

agglutinative, Southern Bantu language. Since the language uses a conjunctive writing system, it has a

large inventory of words and thus spell checking cannot be performed using simple word lookup

algorithms. A system based on such an algorithm would encounter a high proportion of OOV words.

The question that this thesis will attempt to answer is whether the use of the understanding of the

components of the morphological word and the conventions that determine orthographic words in

Shona can improve the performance of spell checkers on these OOV words. The next section

considers the broad language technology concepts that apply to the spell-checking problem.

23 | P a g e

2.5. Language Technology

Language technology is a broad term that refers to all the computational tools that are used to process

human language (Uszkoreit, 2000). These range from simple tools such as “spell and grammar”

checkers like the ones discussed in this thesis, to even more sophisticated tools such as speech

recognition and synthesis tools. The language technology that this thesis is investigating is that of

spell checkers.

2.5.1. Spelling Errors and Spell Check types

One of the key reference works on spell checking is the survey by (Kukich, 1992). Pertaining to the

various types of spell checkers that can be developed, it states that automatic word correction research

focuses “on three increasingly broader problems:(1) non word error detection; (2) isolated-word

error correction; and (3) context-dependent word correction.” This research focuses primarily on the

first two types of spell checkers, with the greater focus being on the first one.

Non-Word Errors

Spelling errors generally fall into two main categories. The first category is that of non-word errors.

These occur when an author of a given text inputs a word that does not exist in the lexicon of the

specific language. For example, an author could type the word “errar” instead of “error”. The token

“errar” is an instance of a non-word spelling error as it does not exist within the English lexicon. The

same would apply in Shona if one typed “vsna” (meaningless in Shona) instead of “vana” (children/

four/ with).

Real word errors

A second type of spelling error is that of real word errors. This is the kind of error that occurs when

the misspelt word is a valid word in the language of the text. An English example of this is the use of

the word “their” in place of “there” in the sentence “Their they are.” A Shona example is of this is the

word “achienda” in the sentence Ndakavaona achienda kubasa (I saw them (or honorific singular)

going (singular, non honorific verb) to work). Whilst there are some authorities who hold that

detection and correction of real word errors falls outside the remit of true spell checking and fits rather

into the category of grammar checking, the taxonomy from (Kukich, 1992) places them within the

broader spell checking framework. This study will not attempt to identify real world errors.

24 | P a g e

Non-word error detection

In its most basic form, the goal of non-word error detection is relatively simple: it is to identify any

words that do not exist in a predefined word list or dictionary. Essentially it boils down to a pattern

matching problem. The problem becomes complex when the target language is morphologically

complex. Whilst it is possible to develop a comprehensive dictionary of most of the words that occur

in the analytic/isolating languages - the same cannot be said of the agglutinating languages -

especially those with greater morphological complexity.

Where morphological complexity limits the effectiveness of dictionary lookup-based spell checkers,

alternative approaches, including the use of finite state transducers to generate the words to be

looked up, need to be considered. This research is aimed at finding solutions to the detection of non-

word errors when dictionary lookup is inadequate.

Isolated word error correction

First generation spell checkers typically aim to achieve non-word error detection. A second level of

maturity within the development of spell checkers is that of the isolated word error correction. This is

an extension of the initial sub-problem. The goal of this area of research is to develop spell checkers

that are able to correct non-word errors without considering the context within which they occur.

Once a non-word has been identified by the previous step, a corrector attempts to generate correct

words from the incorrect input before ranking and presenting them to the user as candidate corrections

for the misspelt word.

Context-dependent word correction

The highest level of spell-checking functionality and maturity is that of context-dependent word

correction. This considers the word and the context within which it occurs. Some authorities like

(Paggio, 2000) posit that context-dependent spell checking is synonymous with grammar checking,

contrasting with the view espoused by (Kukich, 1992).

Out of Vocabulary Words (OoV)

Words are Out of Vocabulary for an NLP system if they were never encountered during training and

are not available within its lexicon. An NLP system has an OoV problem if it cannot generate any of

the OoV words when required to do so. The aim is therefore to minimise the incidence of such words.

25 | P a g e

Alternatively, the aim is to develop methods that can generate the OoV terms without having been

exposed to them.

2.5.2. Evaluation Metrics for Spell Checkers

The performance of a spell checker is measured using the set of standard metrics that is used in most

machine learning two class, classification problems. These metrics are defined below with specific

reference to the spell-checking problem.

True Positives

A word is a true positive (TP) if it is correctly spelt and the spell checker correctly identifies it as

such. The goal of a good spell checker is to maximise such true positives.

True Negatives

True negatives (TN) are those words that are incorrectly spelt which the spell checker correctly flags

as being incorrect. An ideal spell checker ensures that the value of these is also maximised.

False Positives

False positives (FP) occur when a word that is incorrect is marked as being correct by a spell checker.

In other words, this is an error in which the spell checker fails to identify an incorrectly spelt word as

such. Spell checkers usually aim to minimise the incidence of false positives.

False Negatives

When a spell checker marks a correct word as being incorrect, this is referred to as a false negative

(FN). A high incidence of false negatives is undesirable; thus, the goal of spell checker designers is to

minimise their incidence as well.

Lexical Recall or Sensitivity

The lexical recall (Rl) or sensitivity of a spell checker refers to its ability to correctly identify all the

correct words within a document. The formula for R is to divide the true positives by the sum of the

true positives and false negatives. It is usually expressed in percentage terms. The resultant percentage

26 | P a g e

indicates the proportion of correct words that the spell checker is able to correctly identify as such.

The formula for lexical recall is shown in Equation 2.5-1-Calculation of Lexical recall.

𝑅𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Equation 2.5-1-Calculation of Lexical recall

Error Recall or specificity

Error recall (Re) or specificity measures the ability of a spell checker to flag incorrectly spelt words.

The calculation is shown in Equation 2.5-2- Calculation of Error Recall. It is the quotient of the true

negatives by the sum of the true negatives and the false positives expressed as a percentage.

𝑅𝑒 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

Equation 2.5-2- Calculation of Error Recall

Precision

Precision (P) measures the extent to which the words that a spell checker marks as correct are actually

correct. It is calculated by dividing the number of true positives by the sum of the true and false

positives as shown in Equation 2.5-3.

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Equation 2.5-3- Calculation of Precision

Negative Predicted Value

The negative predicted value (Pn) is an analogue to precision, but for the incorrectly spelt words. It

measures the extent to which the words that the spell checker marks as incorrect are actually incorrect.

A high negative predicted value means that the spell checker can be relied upon to flag incorrectly

spelt words. The calculation for this metric is given in Equation 2.5-4.

27 | P a g e

𝑃𝑛 =
𝑇𝑁

𝐹𝑁 + 𝑇𝑁

Equation 2.5-4- Calculation for Negative Predicted Value

Accuracy

The proportion of words that are correctly flagged as either correct or incorrect as a percentage of all

the words evaluated is referred to as the Accuracy (A) of the spell checker. The calculation for this

metric is given in Equation 2.5-5

𝐴 =
𝑇𝑃 + 𝑇𝑁

(𝑇𝑃 + 𝐹𝑁) + (𝐹𝑃 + 𝑇𝑁)

Equation 2.5-5- Calculation of Accuracy

F-Measure or F-Score

The F-measure or F-Score (F1) is defined as the harmonic mean of the precision and recall as given in

Equation 2.5-6 (Powers, 2014). It provides one number that gives an indication of how well a spell

checker performs across both of these. This score gives assumes that precision and recall have the

same value and importance to the system being measured. If the importance of either recall or

precision is viewed different, the alternative Fβ score which is given in Equation 2.5.7 is used. The

value of β gives greater weight to precision or to recall. Values greater than 1 give greater weight to

precision whilst those lower than 1 give greater weight to precision.

𝐹1 = 2
𝑃 . 𝑅𝑙

𝑃 + 𝑅𝑙
=

2𝑇𝑃

2𝑇𝑃 + (𝐹𝑃 + 𝐹𝑁)

Equation 2.5-6- Calculation of F-Score

𝐹𝛽 =
(1 + 𝛽2). 𝑇𝑃

(1 + 𝛽2). 𝑇𝑃 + 𝛽2. 𝐹𝑁 + 𝐹𝑃

Equation 2.5-7- Calculation of Fβ Score

28 | P a g e

Confusion Matrix

A confusion matrix is a 2 x 2 grid which tabulates the actual values against the predictions provided

by the spell checker. The columns of the matrix represent the actual values while the rows represent

the predicted. Table 2.5.1 is an example of a confusion matrix with a third column and third row

added for the calculations that depend on the values in the respective row or column. The part of the

table that is within the bold borders is the confusion matrix. The rest of the table shows how the

values in the confusion matrix relate to the evaluation metrics described in the previous subsections.

29 | P a g e

Words correctly

spelt

Words incorrectly

spelt

Calculations

Words Flagged as

Correct

TP FP Precision

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Words Flagged as

Incorrect

FN TN Negative Predicted Value

TN/(FN+TN)

Calculations Recall/sensitivity

𝑅𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Specificity

𝑅𝑒 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

Accuracy

 (TP+TN)/ (TP+FN)

+(FP+TN)

Table 2.5.1- Confusion Matrix - Summarising methods to evaluate spell checkers

2.5.3. Language Models

In the absence of a comprehensive dictionary with all the words for a given language, the spell-

checking task is transformed into a question of comparing a given word with the most representative

model of the words in the target language. There are various ways in which the words of a given

language can be modelled. Traditionally these are split into rules-based models on the one side and

data-driven or statistical models on the other side. Rules based approaches include the development of

finite state transducers based on the grammar of given languages. Statistical approaches can take the

30 | P a g e

form of using statistical language models. These have various levels of sophistication. Their key task

is to deduce the probability that a given word is valid within a specific language.

The meaning of the term language model has morphed within the recent past. Traditionally, a

language model is a computational representation of a given language. More formally, a language

model “refers to a mathematical function that utilises statistical analysis to estimate the probability of

a given word within a specific context”. Whilst the traditional approach in natural language

processing (NLP) is to limit the definition of a language model to a data driven artefact, language

models can be either rules based/knowledge based or they can be data driven, or as in the case of the

one that will be introduced in this thesis, they can take a hybrid approach. There has been an

increasing tendency to refer to the extremely complex transformer based natural language generation

models as language models. (Bommasani, et al., 2021) have clarified this issue by coining the newer

term, Fundamental Models, to refer to those language models that perform more than the task of

providing the likelihood of a given string of characters or word occurring within a given context.

Rules Based/Knowledge Based Approaches

Computational models of language can be built using handwritten rules provided by experts. This

approach is alternatively called the rules based or the knowledge based approach. It is called rules

based because it relies on the codification of the specific rules that define a given language. The name

Knowledge is attached to it because this presupposes the existence of a knowledge base which is then

converted into a form that can be utilised by a computer to make predictions about a specific

language. Finite State Transducers (FSTs) are the primary way of developing rules based models of

language.

1. Finite State Transducer

Morphological Analysers are realised through Finite State Transducers. A finite state transducer is a

special type of Finite State machine which, apart from just moving from one state to the next given a

specific input, generates some output. In the case of Morphological Analysis, a Finite State

Transducer can emit the part of speech tag of the sub-components of a given word as it goes through

the valid transitions of the word.

Data Driven Approaches

31 | P a g e

In recent times, there has been a tendency to utilise more empirical and data driven approaches. What

this means is that the model is built from learning the structure of a given language from large

amounts of data of the language without being explicitly told what the structure of the language is.

Full word language models

The initial approach to modelling all languages was to utilise full words as the unit of modelling. The

simplest form of a full word model is the n-gram model, where n is an integer typically greater than

one. For instance, a bigram language model is one in which n is equal to two. It can be developed by

enumerating the number of times that pairs of words co-occur within a corpus. These frequencies are

then used to estimate the likelihood that the second word occurs after the first one. This process

works well for languages with lower morphological complexity. Since agglutinative languages and

other morphologically complex languages tend to have large numbers of words, full word language

models do not do well for them.

Sub-word language models

Some language models of language utilise information about the morphological composition of a

language to produce a digital version of the language. There are various types of sub-word language

models. As with full word language models, the simplest type of sub-word language model is the n-

gram. The simplest sub-word n-gram is the character n-gram. It breaks each word into consecutive

chunks of n-characters each and uses these to estimate the probability of that subsequence being found

within the words of a given language. More sophisticated sub-word language models use syllables,

morphs, or morphemes as the modelling units.

2.6. Morphological Analysis

Morphological Analysis is the process of determining the constituent components of a given word. It

is the process of recovering the lexical form of a word, given its surface form. For example, when

given a word like “nyamutambanemombe” (s/he who plays with the cows), a morphological analyser

produces the following analysis <nya> (possessive genitive prefix) <mu> (class 1 noun prefix) tamb

(verb root – meaning to play) <a> (verb final vowel) <ne> (conjunctive affix meaning with)

<mombe> (cow).

2.6.1. Finite State Automata

32 | P a g e

Conceptually a finite state automaton (FSA) is a machine which is made up of a number of states

including a start state and at least one final or accepting state. Such a machine takes a finite string of

symbols from a well-defined alphabet as input and as it processes the string, it moves from the start

state to any of the internal states based on the input that it receives. If the machine ends up in a final or

accepting state, it is said to have accepted the input string. The list of permissible transitions from one

state to the other are described through a transition function.

Formally, a deterministic FSA M is specified by a 5 tuple as follows:

M = (Q, Σ, q0, δ, F)

Where Q is a finite state of states;

 Σ is the set of permissible input characters called the input alphabet

q0 ∊ Q is the start state.

F ⊂ Q is the set of final or accepting states

δ: Q x Σ → Q is the transition function which indicates the valid transitions from one state to another

state for a given input. In a deterministic finite state automaton, there is only one valid transition from

each state on any given input symbol.

Among their many uses, FSA are used to develop compilers for programming languages.

Computational linguists have also deployed them to address spell checking as well as grammar

checking. In the context of spell checking, an FSA can be designed to accept only those words that are

valid in a given language. Each word is broken down into a set of morphemes which are then given to

the FSA. The use of FSAs for spell checking will be further discussed in Chapter 5.

2.6.2. Finite State Transducers

Finite State Transducers (FSTs) are a class of finite state automata which have both an input tape and

an output tape. An FST produces some output for each transition that it makes from one state to

33 | P a g e

another. As such they may be used to translate from the input language to the output language.

Alternatively, they can be used to provide a label to the input strings. Within Computational

linguistics, FSTs are used to perform morphological analysis, among other uses. When used in this

way, the FST takes in words and outputs the labels for each of the morphemes of the given word.

Within this thesis, modified versions of FSTs will be used to conduct spell checking.

2.6.3. Syllabification

A syllabifier is a software application that can be used to decompose words of a given language into

its constituent syllables. The complexity of this task is dependent on the morphology of the specific

language. This is because the rules that determine the identification of syllables differ across

languages. The process of morphological analysis can be aided by the use of a syllabifier as some of

the morphemes for a language may consist of syllables as is the case with some Shona verb and noun

prefixes. Section 2.8.1 describes the nature of syllables for Shona.

2.7. Two level Formalism

The two-level formalism is a method for developing computational models that can recognise word

forms in morphologically complex languages (Koskenniemi, 1984). It is built from two key parts: “a

lexicon system and two level rules” (Koskenniemi, 1984). The two-level rules describe the

relationships between surface and lexical forms of words. A detailed explanation of this formalism

and how it applies to the spell checking task will be given in the methods chapter. However, in the

present chapter, we consider the use of this formalism on the previously discussed example of the

words gudo/makudo and gava/makava.

It was previously stated that makava is the surface form of the inexistent lexical form magava in the

same way that makudo is the ungrammatical surface form of magudo. The two level formalism for a

language would have the list of lexical words that are valid in the language - in this case, gudo, gava,

gororo (outlaw/robber), etc. It would then also have a set of rules that apply at both the lexical and

surface levels in parallel. In this case, the rule is that Shona nouns in class 5 that begin with the

consonant <g> when pluralised take on the noun class 6 prefix <ma>. Whenever the phoneme /g/,

follows the noun class ma, it is changed to the phoneme /k/. Similarly, there is a rule that says if a

word is in class 6 and has the noun prefix <ma> followed by the morpheme k-, then the singular form

of that word is in class 5. This singular form of the word does not include the <ma> prefix and

replaces the /k/ phoneme with the /g/ phoneme. It must be stated at this point that it is very difficult to

identify a compact set of rules that can apply to all word forms for a given language. For instance, in

34 | P a g e

the case of Shona, the above rule falls flat for some surface words like gamba (hero) where the lexical

(magamba) and surface forms (magamba) are identical and do not conform to the preceding rules

which would imply that the plural would be the ungrammatical makamba.

The power of this formalism is that it can be used to derive words that do not exist within the lexicon

using a small set of rules. This is particularly helpful for spell checking a language where it is not

feasible to have a dictionary of all the words as is the case for the CWALs

2.8. Shona Grammar

Shona is a Bantu language. It is classified as a Southern Bantu Language by Doke and listed in its

own category by (Janson, 1991-92) and Ethnologue (David M, Simons, & Fennig, 2021). Like all

other Bantu languages, it is an agglutinative language which has a noun class system. This section

presents an overview of the main components of Shona Grammar that have a bearing to the spell

checking problem.

2.8.1. Shona Orthography

One can consider a spell checker to be a validator of the conformance of a written text to a given

orthography. It is therefore important that the language’s orthography be properly understood before

the development of such a spell checker is attempted. The current orthography for Shona is based on a

1967 revision of the one that was proposed by Doke in 1931. This initial proposal went through the

first revision in 1955 before the Shona language committee reviewed it in 1967. The main

characteristic of this orthography is the use of the conjunctive writing system, the Roman alphabet,

and a set of principles to guide word division (Doke, 2005). Whilst they were provided to help

speaker-writers, these principles have been the source of much debate and confusion. As a result, the

orthography is not without its detractors and there are at least two proposals to revise it including that

of (Magwa, 2008). Discussion of these issues is outside the scope of this thesis. What is of interest to

this study are the issues of the alphabet, the nature of syllables, as well as the rules pertaining to word

division that are specified in this orthography. These are briefly discussed below.

The alphabet

Shona uses a subset of the Roman alphabet which excludes the letters l, q, and x. The full list of letters and digraphs that are

considered to be part of Shona’s alphabet are given in

Table 2.8.1.

35 | P a g e

Shona Alphabet

a, b, bh, ch, d, dh, e, f, g, h, i, j, k, m, mh, n, nh, ny, n’, o, p, r, s,

sh, sv, t, u, v, vh, w, y, z, zh, zv (Doke, 2005)

Table 2.8.1 – Shona Alphabet – Letters and Diagraphs used in Shona orthography

Syllables

(Mpofu, Ngunga, Mberi, & Matambirofa., 2013) quoting (Ducrot & Todorov, 1972) define a syllable

as “a phonemic group constituted by a phoneme called syllabic and, optionally, by other non-syllabic

phonemes. The first constitutes the peak of a syllable whereas the others form its margins”. Shona has

two types of syllables. The first one is what they term V-syllables. These are syllables composed of a

single vowel like the i in ishe. The second type of vowels are referred to as CV-syllables. These are

made up of a series of valid consonants followed by a vowel. A syllable with a vowel at the end is

referred to as an open syllable. All Shona words are composed of open syllables - meaning that no

valid words end up in a consonant. Formally, a Shona word can be viewed as being a string with the

following form:

w=V[0|1]CV*

where V[0|1], indicates that a word can start with zero or 1 vowels and

CV* means that a valid Shona word is composed of zero or more open syllables.

Equation 2.8-1 Syllabic formulation of a Shona word

The implication of this for a spell checker is that it is possible to deduce the correctness of a word by

checking to see if any of the constituent syllables do not conform to this pattern.

36 | P a g e

 This thesis uses the grammar described by (Mpofu, Ngunga, Mberi, & Matambirofa., 2013) as a

reference for both the orthography and grammatical information used to develop the spell checker for

Shona.

2.8.2. Noun Morphology

Apart from having the syllabic form described in the preceding section, each part of speech has a

well-defined structure or morphology. This section considers the noun. It is one of the most important

word types in Shona morphology as it determines the form of all other words within a given sentence

through a property referred to as concordial agreement. Shona nouns, like those of other Bantu

languages, have a relatively simple morphology. They are made up of two parts - a class prefix, which

can be the null string, and a noun stem. Shona has 20 of the 23 numbered noun classes attested in

Bantu languages. These are classes 1 to 19 and class 21. Words in each class can be identified by the

class prefix. Some noun classes have the null string as the prefix. Table 2.8.2 is a schematic of the

normal form of the Shona noun as well as some examples for each of the classes.

Class Number Class Prefix Example Noun Stem Example Noun Gloss

1 mu- -komana mukomana boy

1a ∅ Baba baba father

2 va- -komana vakomana boys

2a va- -tete vatete paternal aunt

37 | P a g e

Class Number Class Prefix Example Noun Stem Example Noun Gloss

2b a- -mai amai mother

3 mu- -ti muti tree

4 Mi -ti miti trees

5 ∅ Gava gava fox

6 ma- -gava makava foxes

7 chi- -ngwa chingwa bread (single)

8 zvi- -ngwa zvingwa bread (plural)

9 ∅[i] Mbavha mbavha thief

38 | P a g e

Class Number Class Prefix Example Noun Stem Example Noun Gloss

10 ∅[dzi] Mbavha mbavha thieves

11 Ru -kova rukova river

11 Ru -oko ruoko hand

12 ka- -mbuyu kambuyu insect

13 Tu -mbuyu tumbuyu insects

14 u- -chi uchi honey

15 ku- -famba kufamba to walk

16 pa- -seri paseri behind

39 | P a g e

Class Number Class Prefix Example Noun Stem Example Noun Gloss

17 (ku-) -seri kuseri behind

17a ∅ Zvimba Zvimba Place name

18 mu- -seri museri behind

19 svi- -nhu svinhu small thing

21 zi- -nhu zinhu huge thing

Table 2.8.2 - Shona Noun Morphology

2.8.3. Verb Morphology

The verb has the most complex morphology within Shona. A generic verb is composed of any number

of optional prefixes followed by a stem and up to three optional suffixes, which include the

final/terminal vowel, verb extensions and the clitics. (Mberi, 2006) proposed a thirteen slot system to

describe the Shona verbs. This system is reproduced in Table 2.8.3 - Shona Verb Slot system -

according to Mberi.

40 | P a g e

1 2 3 4 5 6 7 8 9 10 11 12 13

Neg/

Mood

SC TAM NEG TAM NEG TAM Aux OC R Ext FV Clitic and

other

i SC i si chi Si chi ndo zvi R an a e-yi

ha sca ch sa ka Ka ka mbo

anur e e-yi

ha sco no

do Za zo ngo

ek (i) e-pi

nga u

ne

zo

enur

e-ka

mu

nga

fum

er

ku

etc

ik

Table 2.8.3 - Shona Verb Slot system - according to Mberi

41 | P a g e

KEY

1. Negatives, Mood

2. Subject

Concord

3. Tense-Aspect-

Mood (TAM)

4. Negative

(Neg)

5. TAM 6. Neg

7. TAM

8. Auxiliary 9. Object Concord

10. Verb Root

11. Extension(s) 12. Final Vowel

13. Clitics

The following examples illustrate how this verb system works in practice. The Shona verb enda means

go. It is composed of the verb root -end- and the final vowel a. In this base form it instantiates slots 10

and 12.

Table 2.8.4 shows eight examples of how this verb can be transformed through the instantiation of the

other verb slots. Example 7 amply demonstrates the complexity of the verb. In this example, seven of

the thirteen slots are filled in. Here the word ngatichimuendeserei (let us now take it for him/her) has

the hortative mood morpheme <nga> in slot 1. This is followed by the subject concord morpheme <-

ti-> which indicates the first person plural. The next morpheme <-chi-> marks the tense and aspect of

the verb. In this case it indicates the fact that this action will happen in the near future. The object of

the verb is indicated by the next morpheme <-mu->. This specifies that the action of the verb will be

on a human object. As already stated, <-end-> is the verb root and this is followed by two verb

extension morphemes. The first one <-es-> is the causative verb extension whilst the <-er-> is the

applicative extension.

42 | P a g e

It should be clear from the above that knowledge of this verb slot system can be used to determine the

correctness of a given Shona verb. This will be further discussed in the methods chapter.

43 | P a g e

1 2 3 4 5 6 7 8 9 10 11 12 13 Full word Gloss

Role Neg/

Mood
SC TAM NEG TAM NEG TAM Aux OC R Ext FV Clitic

and

other

1

-end-

-a

enda Go

2

a

-end-

-a

aenda S/he has gone

3 ha- -a-

-end-

-i

haaendi S/he does not go

4

a-

-ka-

-zo-

-end-

-a

akazoenda S/he finally went

5

a- -no-

-end- -es- -a

anoendesa S/he goes with (takes)

6

-nda-

-ka-

-

chi-
-end- -es-

-er-

-w-

-a-

ndakachiendeserwa I had it sent for me

7 nga- -ti- -chi-

-

mu-
-end- -es-

-er-

-ei/-a Ngatichimuendeser/

a?
Let us now send (the

things) to him/her

8 ha- -ku- -cha-

-end- -

ek-
-i

hakuchaendeki It is no longer feasible

to go there

Table 2.8.4 Example verbs based on Mberi’s Shona Verb Slot System

44 | P a g e

2.8.4. Other Parts of speech

In comparison to nouns and verbs, other parts of speech have relatively simpler morphology and are

arguably fewer. This section provides a broad overview of each of these.

Adjectives

According to (Mpofu, Ngunga, Mberi, & Matambirofa., 2013), Shona adjectives fall into two

categories: i) the first group are called variable adjectives; and ii) a second group of invariable ones.

The variable adjectives have a similar structure to nouns in that they have a prefix and a stem. They

take an adjectival prefix that agrees with the noun that they modify. Invariable adjectives do not have

a class marker and do not have to agree with the noun that they modify.

Some adjectives can be modified by adding the suffix -sa to the adjectival stem in a process called

intensification. Table 2.8.5 has some examples of adjectives that are intensified through suffixation by

-sa.

Example Gloss

mombe hurusa a very big cow

murume mutemasa a very dark man

Table 2.8.5 Examples of intensification by appending the suffix -sa

Another way in which adjectives can be intensified is through a process called reduplication. This is

when the adjectival stem is repeated as shown in Table 2.8.6.

45 | P a g e

Example Gloss

munda murefu-refu an extremely large field

nhasi izuva guru-guru Today is a very important day (literally a big big day)

Table 2.8.6 - Examples of reduplication of adjectives

Possessives

In Shona, Possessives are a part of speech that modify the noun as part of the broader genitives. Their

morphology is remarkably simple, and the set of possessives is easy to enumerate. These include

words like yangu (mine class 4 noun), rangu (mine class 5 noun), changu (mine class 7 noun), chako

(yours class 7 noun), chedu (ours class 7 noun).

Demonstratives

Like the possessives, the set of demonstratives in Shona has a small number of members. Words that

fall into this category include uyu (this one - human subject), iyo (that one – class 4 subject), and

ichi (this one - class 5 subject). However, unlike the possessives, and like the adjectives,

demonstratives can be reduplicated in three different ways. These three ways are shown in Table

2.5.4.c.

Example Gloss

mwana uya uya that child

mwana uyuyu this child here

mwana yuyuyu this child here

Table 2.8.7 - Examples of reduplication of Demonstratives

Another way that demonstratives can be used to modify nouns is in the form of enclitics. This is when

the first vowel of the demonstrative is deleted whilst the rest of the word is added to the noun that it

46 | P a g e

modifies as a suffix. For example, the noun benzi (mad person) could be modified by the

demonstrative iro (that one - class 5) to form the word benziro (that mad person). Demonstratives also

modify absolute pronouns to form demonstrative pronouns like <iyeyu> (this person here) which is

the result of combining the pronoun <iye> (this person) and the demonstrative <uyu> (who is here).

Quantitatives

Quantitative serve the purpose of qualifying nouns in relation to quantity and have the structure

<prefix> + <stem> (Mpofu, Ngunga, Mberi, & Matambirofa., 2013). The set of quantitative stems is

composed of only three items -ose/-ese and -ga. The prefixes that they take depend on the noun that

each of these quantitative qualifies.

Enumeratives

Shona nouns can also be qualified by the enumeratives. These are words that have the enumerative

stem -mwe.

Genitivisation of Nouns

Nouns can be turned into adjectives by the addition of the genitive marker -e-, preceded by the

relevant class agreement marker. For instance, the noun mupurisa (policeperson) can be transformed

into the adjective wemupurisa ([human subject] of [“belonging” to] the policeperson) as in mwana

wemupurisa (the policeman/woman’s child). Similarly, the noun hari (clay pot) can also yield the

adjective yehari (of the clay pot).

Infinitisation of Verbs

Infinitives can be formed by appending the prefix ku- preceded by the genitive marker -e- to verb

roots. For example, the verb root -penga- (be mad) can become the infinitive zvekupenga ([things] of

madness) by appending the class 8 prefix zv-, the genitive marker -e- and the prefix -ku- to it.

Pronouns

Pronouns can take one of five different forms within Shona. The first form is that of personal absolute

pronouns (PAP). The set of PAPs is finite, having one member per noun class. However, these can

also go through reduplication. The second set of pronouns are called personal reflective pronouns

47 | P a g e

(PRP). PRPs take the form of the affix -zvi- within verbs as in the word ndazviruma (I bit myself).

Here the -zvi- indicates that the action happened to me. Demonstrative pronouns come in four flavours

indicating how far the speaker is from the object being pointed out. They are also a closed set. The

same applies to possessive pronouns.

The last set of pronouns is that of interrogatives. Whilst this set has a larger membership, only the

following are of interest to this study as they influence orthography and the possible identification of

previously unseen words:

1. the suffixation of -ngani? to noun prefixes. This set is arguably fixed.

2. the suffixation of -i? to noun prefixes.

3. suffixation of -ei?

4. suffocation of -ni or -pi

2.8.5. Summary of Shona Morphology

The preceding sections on Shona morphology have demonstrated the regularity in the words that

make up the various parts of speech in Shona. This regularity helps resolve the paradox of having an

inexhaustible inventory of words, without overwhelming the speaker-writers of the language. It is also

what is used by human spellers to differentiate between valid and invalid spellings of words. This

research will look into the effect of codifying this knowledge on the performance of spell checkers on

OOV words.

2.9. Synthesis of concepts

Section 2.3 provided a broad definition of the spell-checking problem. In its simplest formulation it

can be reduced to a case of string searching. Section 2.7, particularly subsection 2.7.3, showed that

this is inadequate for Shona due to the way that words, especially verbs, are formed.

The correctness of a word in Shona and other CWSBLs can be determined in a few ways. The first

way is to look it up in a dictionary. If it exists in the dictionary, then the word is valid. However, if it

is not found in a dictionary it could still be a valid word. This is because if the word is composed of

valid constituent units, the word can still be valid. Still, this can only be true if the units are properly

48 | P a g e

ordered according to the morphological rules of the language. Such rules can either be explicitly

encoded into a spell checker or they can be empirically derived from language data.

To illustrate the validity of a word, consider the word “[V]anyakutenga” (noun - the [honorific] one

who bought). Even though it is a valid word, there is no entry for it in DGS, and this is not an

oversight on the part of its compilers. There is, however, an entry for the verb root “-tenga” (buy),

from which it is derived. A human conducting a spell checking exercise can utilise their knowledge of

the morphology of Shona to validate that “[V]anyakutenga” is a correct word. This would apply even

if they had never encountered the verb “tenga” before.

Figure 2.9-1 generalises the fact that Shona, like other CWSBLs, is complex. First, it presents the

generic form of a morphologically valid word in any conjunctively written agglutinative language.

This generic form is then instantiated with examples of the Shona word “[V]anyakutenga” using three

different approaches ordered by their proximity to what is most intuitive. The first example shows the

character trigrams that make up the word. Character trigrams are a subclass of the sub-word language

models discussed in section 2.5.3 and are the basis for the spell checker that (Ndaba, Suleman, Keet,

& Khumalo, 2016) developed for isiZulu.

The second instantiated example is that of the syllabic decomposition of the word. Last, is the

morphological decomposition of the word. Morphological decomposition is closest to the way that

humans would check the validity of a given word.

49 | P a g e

Figure 2.9-1 - Generic form of conjunctively written agglutinative words

2.10. Chapter Summary

 This chapter introduced the terms and concepts that will be encountered in the rest of the thesis. It

started by defining the linguistics terms and concepts before introducing the terminology utilised in

the NLP of agglutinative languages. Finally, a synthesis of the concepts and how they relate to spell

checking was provided.

50 | P a g e

“We don’t have to waste our time learning how to make pastry when we can use grandma’s recipes.”

Orson De Wit.

Chapter 3 - Research Methodology

3.1. Introduction

Every research project is steeped in a particular research methodology. This chapter introduces both

the theoretical underpinnings as well as the specific details of the methodology used in this thesis. In

presenting this methodology, it begins with a brief overview of the methodologies available for use in

computer science research. This introduction leads into a section which discusses the choice of the

methodology used in this study. Subsequently, the research design is presented in detail. The method

used to collect data, including the data sources and collection process, are presented next. Following

this is a section on the measurements used to evaluate the data as well as a discussion on the reliability

and validity of the research. The chapter closes with a summary of the methodology chosen for this

thesis.

3.2. Research Methodologies for Computing Science

Each scientific discipline has its established methodologies for conducting research. Computing

Science (CS) is not an exception to this. (Amaral, 2011) identifies five different methodologies used

by researchers in CS. These are i) Formal approach, ii) Experimental approach, iii) Build approach,

iv) Process approach and v) Model approach. Each of these methodologies is best suited to different

research problems. Specifically, formal methodologies are used to prove facts about algorithms and

system(s). Experimental methodologies can be used to evaluate new solutions for problems. The build

research methodology involves the construction of either a physical artifact or software system. It is

only considered to be research when it produces something that is completely new or that has novel

features. The process methodology is suited for understanding the processes used to understand a task

in computing science. The last methodology is often used together with one of the previous four

methodologies. It is best suited in situations where researchers are working with complex systems.

Abstract models are defined to simplify this complexity and enable the researchers to better

understand it.

(Dodig-Crnkovic, 2002) propose a simpler taxonomy of CS research approaches. According to them,

CS shares many characteristics with what they term the classical sciences. It is thus subject to

investigation through the classical scientific methods. They further characterise research in CS as

51 | P a g e

falling into three broad categories which are i) Theoretical Computer Science - which is closely

related to (Amaral, 2011)’s formal methodology, ii) Experimental Computer Science which maps to

the experimental approach in the earlier theory and iii) Computer simulation which is linked to the

modelling approach.

Other authors propose different methodologies for use within the CS domain. One such approach,

whose usage transcends CS, is Action Research (AR). It is an iterative process to research which

combines taking concrete actions, reflecting on the outcomes, and optionally iterating through the

process as theory and practice are engaged (Bradbury, 2015). Another approach is Design Science

Research (DSR) (Hevner, March, Park, & Ram, 2004; Pries-Heje, 2007) . With its widespread usage,

(Peffers, Tuunanen, & Niehaves, 2018) argued that this is a valid approach which has various genres.

(Warfield, 2010) takes a more traditional approach to the discussion of research methodologies

applicable to the Information Technology and Information Systems (IS/IT) domain. They place IS/IT

research methodologies into three categories: Quantitative Research, Qualitative Research and Mixed

Methods Research. Within these broad categories, they posit that Quantitative Research takes place

within the positivist paradigm and can be further broken down into experimental research, quasi-

experimental, correlational, and descriptive approaches. The positivist paradigm is one of two broad

paradigms under which research is conducted. Within this paradigm the main assumptions are that

there is an ontological difference between the researcher and the reality that they seek to study. The

aim of the researcher is to objectively reveal this reality in a way that can be replicated by other

researchers. This differs from interpretivism which posits that researchers cannot be separated from

the reality that they aim to study.

Within positivism, the key difference between the experimental and the other quantitative approaches

is the extent to which the researcher can infer causal relationship among phenomena. Uniting these

methods is a five-step process which starts with the determination of the research questions. This first

step is then followed with the determination of the study participants and then the selection of a

method to answer the research questions. Statistical analysis tools to analyse the collected data are

then selected before they are interpreted.

Qualitative research takes place within the interpretivist paradigm. Five general designs for qualitative

design are identified. These are i) narrative, ii) phenomenology, iii) grounded theory, iv) ethnography

and v) case study. Each of these broad approaches is best suited to distinct research question types.

Narrative research is for when the study has specific contextual focus. Phenomenology is used when

52 | P a g e

the study is about the lived experience of a specific concept or phenomenon. Grounded theory is

used to generate or discover theory. Ethnographic research is recommended when the study is about

an entire cultural group whilst case studies are for contained group within a specific setting or

context.

Mixed methods borrow from both Quantitative and Qualitative approaches (Damian, et al., 2020). The

use of these methods can be justified by the need to ensure participant enrichment, instrument fidelity,

treatment integrity, and significance enhancement. (Warfield, 2010; Leech & Onwuegbuzie, 2010)

DSR is an ideal method for use in researching a problem that can be investigated by designing an

artefact to solve it. The practical problem that this study seeks to solve is that of the non-existence of

spell checkers for Shona. Conceptually, it also aims to address the problem of the effectiveness of

current methods to address the challenges posed by out of vocabulary words. The conceptual problem

can be solved through the development of a theoretical model which can be validated via formal

means. However, the solution to the practical problem can only be demonstrated through the

development of a software application. It is for this reason that the DSR approach to CS research has

been chosen as the methodology for this study.

3.2.1. Types of DSR

Several genres of DSR exist. (Pries-Heje, 2007) identify six such genres. These are discussed in the

following subsections.

System development Research Methodology

System Development Research Methodology (SDRM) which was proposed by (Nunamaker Jr, Chen,

& Purdin, 1990) follows a 5-step process. These are i) Construct a conceptual Framework, ii) Develop

a System architecture, iii) Analyse and design the system, iv) Build the (Prototype) system, and v)

Observe and Evaluate the system.

DSR Process Model (DSRPM)

 DSR Process Model (DSRPM) is a version of DSR that was proposed by (Vaishnavi V. K., 2007;

Vaishnavi & Kuechler, 2015). It also consists of 5 steps. The first of these is awareness of the

problem. Next comes suggestion. This is followed by development and then evaluation. The process

is closed out with a conclusion step.

53 | P a g e

Design Science Research Methodology (DSRM)

Another genre of DSR is Design Science Research Methodology (DSRM), a six-step process

proposed by (Peffers K. T., 2007). The first of these is to identify a problem and motivate. This is then

followed by defining objectives and a solution. After this is the design and development step.

Following design and development comes demonstration. The next step is evaluation. Communication

of the results is the final stage of this process.

Action Design Research (ADR)

Action Design Research (ADR) borrows concepts from both AR and DSR in general. Formulated by

(Sein, Henfridsson, Purao, Rossi, & Lindgren, 2011) it is a four-step process. It starts with a problem

formulation which is then followed by building, intervention, and evaluation. This step is followed by

reflection and learning. The process closes out with the formalisation of the learning step.

Soft Design Science Methodology (SDSM)

Soft Design Science Methodology (SDSM) was conceptualised by (Pries-Heje, 2007). It follows an

eight-step process which starts with learning about the specific problem. This is followed by a number

of design thinking steps. First there is a step to inspire and create the general problem and general

requirements. After this it is intuit to and abduce the general solution. Then follows Ex Ante

Evaluation and then Designing a specific solution for the specific problem. Following the Design

thinking steps comes the Ex-Ante evaluation of the specific solution, construction, and final Ex Post

evaluation.

Participatory Action Design Research Approach (PADR)

The last genre of DSR is the Participatory Action Design Research Approach (PADR). Proposed by

(Bilandzic & Venable, 2011) it is more suited to the development of solutions for multi-stakeholder

projects. It is a five-step process which starts with Diagnosing and formulating the problem. Next

comes action planning. Then comes design which is conceptualised as action taking. After this comes

impact evaluation. Finally, the process closes with reflection and evaluation.

3.3. Methodology Selected

54 | P a g e

This study primarily uses the DSRM methodology. This is because it is suited to the development of

an artifact that can be used to answer the research questions posed in this study. Specifically, DSRM

is well suited to address research objectives 3 to 8 as these require the development and evaluation of

an artefact to demonstrate that the problem has been solved. The first two research objectives can be

addressed through a literature review. The following section will also show that these objectives can

also be covered during the first step of the DSRM process.

3.4. DSRM

Table 3.4.1The Design Science Methodology Research (DSRM)

Table 3.4.1 shows the process flow proposed by (Peffers K. T., 2007). A key aspect of this process is

that it consists of six different activities. These activities are shown occurring sequentially, but they

can be performed iteratively. The following paragraph describes each of these steps in detail.

3.5. Step 1: Problem Identification and motivation

55 | P a g e

In this first step the specific research problem must be clearly defined. Justification also needs to be

provided for the value of its solution. During this step, the researcher can also explicitly transform the

problem into system objectives or meta requirements. As Table 3.4.1 shows, the entry point into this

first step is problem centred.

Within this study, the identification and motivation of the problem was conducted through the use of a

meta-narrative review of the literature on spell checking for CWSBLs. The following sections present

the details of this meta-narrative review.

3.5.1. Introduction to meta-narrative review

As with most research traditions, the DSRM Guidelines emphasise a deep understanding of the

problem as the entry point to any research endeavour. This subsection presents the first step in the

DSRM process for this project. This step consists of the identification of the problem and the

motivation for the research. Within this thesis, this step is conducted using a literature review of on

spell checkers for the CWSBLs with a particular emphasis on the approaches taken to OOV words.

The review was conducted using the RAMESES (Realist And MEta-narrative Evidence Syntheses:

Evolving Standards) guidelines for meta-narrative reviews (Wong, Greenhalgh, Westhorp,

Buckingham, & Pawson, 2013). As a result, the subsequent sections that describe the review follow

the recommended format for a meta-narrative review as per these guidelines. The remainder of this

introductory subsection presents the rationale for conducting the review. This is followed by a

subsection which gives the objectives and the specific focus for this review.

The next sections elaborate on the meta-narrative review process as follows: First, there is a methods

subsection which starts by highlighting the changes to the review process from what was initially

envisaged to what was finally accomplished is presented. This is followed by a justification for using

the meta-narrative review format and a discussion of the evidence that this specific review meets the

guidelines for these kinds of reviews. Subsequently the processes used to scope, search and select are

each presented in a separate subsection. A subsection on the data extraction leads to one on the

analysis and synthesis of the data thus closing out the methods section. After presenting the methods,

the next key section is that of the results. This encompasses the flow diagram for the process, the

characteristics of the documents that were encountered as well as the main findings of the review. The

last major section discusses the findings, first summarising them and then looking at the strengths and

weaknesses of the previous studies, comparing them with previous literature before making some

final conclusions and recommendations.

56 | P a g e

Rationale for reviewing spell checking of CWSBLS

The utility of spell checkers is not in dispute. That the majority of the word processing software

applications include spell checking demonstrates their ubiquity (Yunus & Masum, 2020). However,

this ubiquity is deceiving. Spell checkers are not available for many languages. There are several

explanations for this disparity. Among these are the fact that NLP methods and rules developed for

the well-resourced languages do not always have broad application to other languages (Gerz, Vulić,

Ponti, Reichart, & Korhonen, 2018). It has also been recently shown that morphology matters when

developing multilingual models (Park, et al., 2021). Unfortunately, most model developers do not

appear to take this into account.

Development of spell checkers for under-represented languages is an ongoing area of research

(Gezmu, Nürnberger, & Seyoum, 2018; Ahmadi, 2021; Himoro, 2020). Despite this, there is a dearth

of prior work on Shona. Shona has neither a widely available nor functional spell checker. Where

attempts have been made by large technology companies like Google and Microsoft on other related

technology like machine translation, the results have been less than stellar12. It is known that

development of an accurate spell checker for the CWSBL is not a trivial endeavour. This is because

simple approaches do not produce satisfactory results.

The challenges associated with the development of spell checkers for CWALs in general and

CWSBLs in particular was briefly touched on in the morphological typology section of the previous

chapter. The next few paragraphs provide additional detail with some examples. As discussed there, it

emanates from the languages’ ability to recursively create new words from relatively small

inventories of roots/stems and affixes. This means that any spell checker relying on the standard

approach of a finite dictionary will fall short as it is bound to encounter words used in real world

settings that do not exist in the lexicon. This finding was previously established experimentally

(Prinsloo & Schryver., 2004).

To illustrate the issue with an example, consider the Shona verb stem -simba (be strong/powerful). It

can be inflected to form new words like akasimba (s/he is strong), achasimba (s/he will become

strong), ndamusimbisa (literally - I have made him strong - colloquially and figuratively, I have

encouraged him), and akazosimbiswa (literally, s/he was made strong, colloquially, and figuratively

he was encouraged). On seeing the above pattern, a human could easily reason that

1See https://www.dutchtrans.co.uk/how-accurate-is-google-translate-for-shona/ (extracted on 3 August 2021)
2See also https://www.techzim.co.zw/2020/06/why-is-google-translate-so-bad-at-translating-shona-ndebele

(extracted on 3 August 2021) for a discussion on the problem of translation.

https://www.dutchtrans.co.uk/how-accurate-is-google-translate-for-shona/
https://www.techzim.co.zw/2020/06/why-is-google-translate-so-bad-at-translating-shona-ndebele

57 | P a g e

akazobatsirwa (s/he was helped) is a valid word without prior exposure to it. This would be truer if

they would have been exposed to the words batsira (help), achabatsira (s/he will help) and

akabatsira (s/he helped) in addition to at least one other analogous extension of simba. Such a

language learner could also conceivably handle an even more complex inflection like

paakazobatsirwa (where/when s/he was eventually helped) which is also a valid word.

Experimentation has resolved that none of the preceding can be assumed with many of the current

approaches used to develop spell checkers and other NLP tools for SBLs. This point is illustrated

using the following mini experiment performed on Google Translate.

First, two Shona verbs with very similar constructions are presented to Google Translate. The first

word is famba (walk). The second one is ona (see). Next, each of these verbs are inflected into their

continuous present tense forms anofamba (s/he walks) and anoona (s/he sees) respectively. After

this, the negated form of this present continuous tense forms, haafambe (s/he does not walk) and

haaone (s/he does not see), are presented to Google translate. The results of this experiment are

presented in the Table 3.5.1. Screenshots from Google Translate showing the actual results of this

experiment can be found in the Appendix - Appendix 2 – Results of Mini Experiment on limitations

of Google Translate.

Shona Gloss Google Translate – English

translation

Famba Walk Walk

Ona See She

Anofamba s/he walks He walks

Anoona s/he sees He sees

58 | P a g e

Shona Gloss Google Translate – English

translation

Haafambe s/he does not walk He does not walk

Haaone S/he does not see haaone

Table 3.5.1 - Results of the mini experiment demonstrating Google Translate's limitations with utilising the morphology of

Shona to inform its translations

It is clear from the above that Google Translate’s translation engine is not “learning” the inter-

relationships between the morphemes that make up the various Shona words. Whilst translation and

spell checking are distinct problems, they are actually related in that both need to be able to

distinguish between valid and invalid words in the target and source languages.

Outside of the development of spell checkers, lexicographers working on dictionaries for CWAL such

as the Shona Duramazwi Guru ReChiShona (DGS) have always been aware of the impossibility of

compiling a list of all possible word forms. As a result, in the case of DGC, they limited the headword

entries in the dictionary to only show non-inflected versions of most of the complex words, like verbs

and some nouns. However, in the front matter of the dictionary, they explain how the language works,

how headwords are selected and defined, and how the entries are constructed for the different word

classes. In the dictionary proper, they leave it to the user to find the correct lemma for an unknown

word, and to figure out how to extend a specific root form for specific contexts (Chimhundu, 2001;

Mpofu N. .., 2007) The key take-away from this observation is that even human spell checkers do not

have access to a dictionary of all the words in the language. They have to resort to a different heuristic

in order to determine the validity of a new word when they encounter it.

Within the realm of computational solutions, since full word list solutions are inadequate to address

the needs of spell checkers for CWSBLs, alternative solutions must be devised. To this end, research

on such alternative methods has been conducted, leading to the development of spell checkers for

isiZulu and other South African SBLs which rely on other modalities. These approaches use

knowledge of the fact that words in these languages can be decomposed into smaller units and that

these smaller units combine in well-defined ways. Broadly, three strands of attacking the problem

59 | P a g e

have arisen, and these are: i) augmenting the dictionaries used in the spell checkers by synthetically

generating additional words through an understanding of these rules as in (de Schryver & Prinsloo,

2004); ii) using handwritten morphological rules to dynamically evaluate the correctness of words

using regular expression based morphological analysers as per (Bosch & Eiselen, 2005) and iii)

utilising sub-word (character) statistical language models (n-grams) to check the correctness of given

words as in the work of (Ndaba, Suleman, Keet, & Khumalo, 2016; Mjaria & Keet, 2018).

The three approaches mirror the key development in natural language processing (NLP) which has

been moving from more human input intensive rules and knowledge-based approaches to less human

input intensive data driven approaches. There are clear trade-offs between the two extremes of this

scale (Vincent, 2019). A key challenge with approaches that require substantial amounts of human

input is that it takes longer to produce spell checkers using this method. The methods are also

not easily generalisable or transferable to other languages, even when they are related. On the other

end of the spectrum, the most advanced approaches utilise the extremely data and computational

power hungry recently named class of foundational models (Bommasani, et al., 2021). These do not

easily lend themselves for use by resource poor researchers working on less resourced languages

(Chau & Smith, 2021; Goetze & Abramson, 2021). One way that they can be used for these languages

is when the approach is to fine-tuning pre-existing models which have been developed elsewhere

(Doddapaneni, Ramesh, Kunchukuttan, Kumar, & Khapra, 2021)

The question that arises is whether any of the methods that are available for CWSBLs can robustly

handle unknown words. It can be inferred that a reasonable goal for a decent quality spell checker for

Shona and other CWSBLs is that it would be able to correctly handle most OOV words, especially

those for which related roots/stems are already recognised. Ideally this should be enabled without the

need for explicit training, or at best with minimal human supervision/input. It is not clear that existing

methods meet this requirement. This is despite the fact that one of the stated goals of each of these

approaches has been to improve performance on the spell-checking task. The link between the

methods of performance evaluation and the effectiveness of the OoV problem is not well established.

In this research study we aim to evaluate the extent to which the approaches that have been previously

developed address the OoV problem. Specifically, we seek to find out the methods that have been

used to determine if such spell checkers can cope with such previously unseen words and how they

have been optimised to deliver improved performance on these words. A spell checker that can

correctly identify OoV words has a higher likelihood of real-world user acceptance than one which is

limited to the lexicon that it was trained on.

60 | P a g e

Objectives and focus of review

This review aimed to evaluate the extent to which the developers of spell checkers for CWALs in

general but more specifically the CWSBLs have addressed the need for their spell checkers to be able

to correctly handle OOV words. The overarching objective for this review, linked to those of this

research, were as follows:

RO1. Determine the challenges encountered in the development of spell checkers that aim

to maximise the correct identification of OOV words for SBLs.

RO2. Determine the previous approaches utilised in the development of spell checkers that

aim to maximise the correct identification of OOV words for SBLs.

The above objective were met by answering the following research questions:

RQ1. What are the challenges with the previous approaches used to maximise the correct

identification of OOV words for SBLs?

RQ2. What are the approaches that have been utilised to develop spell checkers that aim to

maximise the correct identification of OOV words in SBLs?

The following search questions were used to address the above research questions, for each paper that

was reviewed

1. Which approaches did the paper utilise for spell checking?

2. Did the paper address the question of previously unseen/OOV words?

3. How did the approach perform on OOV words?

4. What were the key challenges faced with these approaches with respect to previously unseen

words?

5. What methods were developed to mitigate these challenges?

3.5.2. Method

Changes in the review process

The RAMESES guidelines require that any changes from the originally envisaged process be reported

on upfront. There were no material changes to the approach that was used to conduct this review from

61 | P a g e

the one that was initially planned and therefore none can be reported

here.

Rationale for using meta-narrative review

“ meta-narrative review is a way of systematically reviewing literature, that was developed to probe

subject areas that have been studies by diverse researchers from different angles. (Wong,

Greenhalgh, Westhorp, Buckingham, & Pawson, 2013). It is a qualitative method which aims at

identifying the main ideas in the different research communities linked to the study topic. With

specific reference to the question of spell checking for CWALs, various researchers have looked at

the spell-checking problem. The key focus of these researchers has been on improving the reported

accuracy, recall and precision of these spell checkers. There has been progress towards the

achievement of these goals in laboratory conditions. However, the question of how well the spell

checkers work with OOV does not appear to have been answered. Since the researchers have

approached this problem from diverse perspectives, the meta-narrative review approach is considered

suitable for such a review.

Evidence for adherence to guiding principles

The RAMESES guidelines for conducting meta-narrative reviews strongly recommend that they

follow six guiding key principles. These principles are as follows

1) The first principle is that of pragmatism. This principle holds the studies that need to be

included are not self-evident and as such reviewers need to apply judgement in selecting those

sources that will be most useful to the intended audience. This principle guided the search and

selection process for this thesis. For example, whilst conducting this review it became clear

that the literature on spell checking for the SBLs is limited. Research in the areas has been

conducted by a small group of researchers. Care has been taken to widen the scope of the

search to learn from other similar language groups that have similarities to the CWSBLs as

will be demonstrated later in this chapter.

2) Pluralism is the key principle which holds that a topic must be explored from “multiple

angles and perspectives, using the established criteria appropriate to each”. It is required that

when performing a review of a given study the reviewers should apply the same paradigm to

judge its findings. The guidelines caution against the use of methods developed for other

research to evaluate other different research traditions. In this study, we evaluate each study

based on its own assumptions and approaches to the spell-checking problem.

62 | P a g e

3) The principle of historicity holds that it is best to present each tradition in chronological

fashion. Whilst this is not strictly followed in this review, the results section does treat each

thematic tradition according to this principle.

4) Contestation as a principle is also applied by ensuring that ideas that do not agree are

presented from opposing research traditions. This is one of the tenets of this specific

principle.

5) It is required by the principle of reflexivity that the reviewers should reflect on the emerging

findings of the review as they work on it. Whilst this review was carried out by only one

reviewer, care was also taken to reflect on the themes that emerged as the work proceeded.

6) Finally, the principle of peer review holds that the emerging findings should be presented to

an external audience for “further guidance and analysis”. This thesis is one way in which the

findings of this review will be disseminated to a wider audience.

Scoping the literature

A high-level scoping and research territory mapping was deductively conducted. This started with a

broad search of the literature on spell checking to identify the key research strands around their

development for all languages. This was then narrowed to a search of the approaches on agglutinative

languages. Based on initial results for the South African Bantu languages which identified the

distinction between conjunctively written and disjunctively written languages, the review was further

narrowed to just the conjunctively written languages. Through application of this method, a focused

subset of the literature that dealt exclusively with the challenges of developing spell checkers for

conjunctively written agglutinative languages was acquired. Through this search it also became clear

that there was also a need to review work on the development of related concepts even in studies in

which they were not utilised in spell checkers. This process culminated in the development of the

following research territory map.

63 | P a g e

Figure 3.5-1Research territory map

Searching processes

Using the insights gleaned from the scoping exercise, the following search strategy was developed.

All the searches were performed using JabRef’s web search functionality on the following sites via

the JabRef interface: Google Scholar, the Association of Computing Machinery (ACM)’s ACM

Portal, the Collection of Computer Science Bibliographies, SearchAll and the Institute of Electrical

and Electronics Engineers (IEEE)’s IEEExplore websites. Further searches were manually done on

the following websites and then added to JabRef: Google Scholar, the Association of Computational

Linguistics (ACL),

The key search was for literature on spell checkers for CWSBLs. Additional searches were then

performed on the non-spell-checking literature for each of the methods utilised to improve their

performance on OoV words on other agglutinative languages.

Table 3.5.2 summarises the purpose and the details of each of the search terms that were used to

conduct the search process.

64 | P a g e

Purpose of Search Search Terms used

Identify Studies with Spell checking

for CWSBLs

“Spell Check” +isiZulu

Or “Spell Check” +isiXhosa

Or ‘Spell Check” +isiNdebele

Or “Spell Check” + siSwati

Identify modelling paradigms used

on CWSBLs

“Language Model” +[isiZulu/isiNdebele/siSwati]

Or “Neural Language Model”

+[isiZulu/isiNdebele/siSwati]

Identify Studies dealing with OoV

words for agglutinative languages

“Out of vocabulary words” + “Language model” +

“agglutinative language”

Table 3.5.2 - Search terms used to search for literature

Selection and appraisal of documents

The references to all the documents that met the search terms were downloaded into JabRef. A review

of the abstracts of each of the found papers was then conducted. Only papers that explicitly dealt with

spell checking of CWSBLs were marked for inclusion in the list for final review, whilst the remaining

papers were excluded.

65 | P a g e

After the filtering process was concluded, the remaining papers then underwent a detailed review.

First, the list of papers was exported to Excel. Then the resulting Excel spreadsheet was amended to

include an additional set of columns, one for each of the key questions that each paper was subjected

to.

Data Extraction

For each paper that met the required criteria, the following details were extracted:

1. The bibliographic details of the paper

2. The language that the paper addressed

3. Which modelling paradigm the paper utilised

4. Whether it explicitly addressed the question of OoV words

5. What approach it took to optimise the performance of the spell checker

6. How the spell checker was measured - which metrics were utilised

7. How the spell checker performed against those metrics

8. A thematic summary of the paper.

Analysis and synthesis processes

Emerging out of the data extraction, a timeline of the research and the development of spell checkers

for CWSBLs as well as the key shifts in the approaches used to implement them were drawn up. This

helped conceptualize the historical development of the field as well as foreground the main strands of

thought that have permeated the field from the onset. These are further described in the next section.

3.5.3. Results

Document flow diagram

66 | P a g e

Figure 3.5-2 provides a visual summary of the process that was used to conduct this review.

Figure 3.5-2 -Flow diagram for the meta-narrative review process

Document characteristics

Figure 3.5-3 is a network analysis of the relationships between the various researchers who have

conducted research on CWSBLs. This is conducted on two axes. As the legend shows, the colour

indicates the years that the researchers were active, whilst the links show the strength of collaboration

among different authors. The earliest paper was written in 2003 whilst the youngest paper was

published in 2018. Four of the papers were written by the duo of Prinsloo and de Schryver. The next

most prolific author is Keet who has collaborated with Khumalo, Ndaba and Mjaria on different

occasions of the papers

67 | P a g e

Figure 3.5-3 Network analysis of the key researchers on spell checking for CWSBLs

Main findings

This review sought to answer two very specific questions. The first one concerns the identification of

the challenges and approaches that researchers working on spell checkers for SBLs have encountered.

First, it is clear that the researchers identified the problem with pure dictionary lookup approaches

right from the beginning of the development of spell checkers for SBLs. The first approach that they

utilised to solve this problem was that of augmenting the available dictionaries by synthetically

generating more words (Prinsloo & Schryver., 2004; Prinsloo & Eiselen, 2005). Two issues arise with

the synthetic generation of words. First, the spell checker is still limited to a finite list of words from

which to search. Second, there is a danger of what the authors term over-generation. This means that

some words that are synthetically generated are invalid. To remedy this later issue, they employed

linguists to filter the list of synthetically generated words leaving only valid isiZulu words.

The next approach that was used to address the problem of OOV words was the use of morphological

rules (Bosch & Eiselen, 2005). Using regular expressions to model the morphological rules of isiZulu,

a morphological analysis-based spell checker of isiZulu was developed. This approach was shown to

perform much better than increasing the words in the lexicon. However, it also suffered from the

problem of over-generation.

68 | P a g e

Data driven approaches to the spell checking of SBLs were first reported in 2016 by (Ndaba,

Suleman, Keet, & Khumalo, 2016). Departing from the rules based approached that had been

previously used, they instead used a character trigram-based language model to detect incorrectly

spelt words in isiZulu. Whilst their main concern was to understand the impact that the corpus had on

the effectiveness of such a spell checker, they found that their spell checker performed comparably

well with the rules-based approaches previously mentioned. A subsequent study by (Keet & Khumalo,

2017) which aimed at evaluating the impact of this spell checker on the intellectualisation of isiZulu,

found that it had some problems with some OoV words.

All the spell checkers attested in the literature have only concentrated on the non-word error detection

problem. None of them have moved on to the real word error detection problem. However, work on

non-word error correction has also begun.

Figure 3.5-4 illustrates the key paradigms that have been applied to the spell-checking problem for the

CWSBLs as well as a few other CWALs. It also gives an indicative view of the amount of human

effort required to develop each of these methods versus the amount of data and computation required

to enable each approach.

Apart from the reviews on CWSBLs, additional reviews were conducted on spell checkers that have

been developed for other CWALs. A similar pattern emerged in that the vast majority of the literature

on spell checking for CWALs utilises rules based approaches to address the challenges brought by

their morphologies. Only one of the studies that were surveyed for these non CWSBL CWALs

utilised a language model approach.

69 | P a g e

Figure 3.5-4 Approaches to Spell Checking for CWSBLs

3.5.4. Discussion

Summary of findings

Whilst it can be argued that every researcher who has worked on the spell-checking problem of the

CWSBL is acutely aware of the OOV problem, none of them have explicitly looked at the question of

how to improve the performance of spell checkers on OOV words. The main reason for this was

initially pragmatic (de Schryver & Prinsloo, 2004). Recently there has also been a narrow focus on

meeting the performance benchmarks against limited test documents without explicitly considering

how the spell checkers would perform on words that are foreign to their lexicon. This approach is not

entirely without merit due to the Zipfian nature of language. However, since CWSBLs have a long tail

of words that occur very infrequently, the need to address them is critical. One of the key challenges

identified is that researchers must balance the need to produce solutions that can be made available to

the language communities within the shortest amount of time with the need to develop comprehensive

70 | P a g e

models that take even longer to develop. Pragmatism triumphs and, as such, the tools developed are

known not to be as effective as they could be. It is also not clear if the desire to be able to adequately

address OOV words is shared by all in the research community. There appears to be a mistaken view

that achieving high levels of accuracy and recall during the development process indicates equally

good recall and accuracy with OOV words. However, since these metrics are measured against the

whole test documents without paying due regard to OOV words, it is unclear if the misses are all

OOV words, or if any of them are correctly identified. Whilst dictionary lookup-based spell checkers

will fail on OOV words, the same is not necessarily true of the other approaches.

Strengths and limitations and future research

The key weakness of this review is that it was conducted by one student and was thus unable to follow

all the guidelines for the RAMESES meta-narrative review process.

Comparison with existing literature

The field of spell checking for CWAL outside of the CWSBL is more advanced. There have been

other reviews conducted on the general spell-checking problem. These include the work of work of

(Gezmu, Nürnberger, & Seyoum, 2018; Ahmadi, 2021; Himoro, 2020). In comparison to those

studies, this review was focused on CWAL with a particular focus on CWSBLs. It confirmed the

same methodological approaches to spell checking as were previously reported on by (Kukich, 1992)

and many others since then.

3.5.5. Summary of Meta-narrative review

This review sought to answer two questions pertaining to the performance of spell checkers for

CWSBLs. It established that there has been an increasing movement towards more sophisticated

approaches to the handling of the OOV problem. However, there has not been any explicit focus on

evaluating the performance of the spell checkers based on these more sophisticated methods. Based

on this it is clear that the OOV problem is not yet adequately addressed for CWSBLs.

3.6. Step 2: Define the objectives for a solution

71 | P a g e

The second step within the DSRM methodology is the clear articulation of the objectives for the

solution. Key inputs into this step are the outputs of the initial step as well as an understanding of the

technological status quo as well as the domain of the problem. With this understanding, the

objectives of the solution can be inferred. As a result, the following subsections will start with the

identification of the objectives for the solution. Following this the Design and development of the

solution will be described in the next subsection.

Objectives of Solution

The problem faced with spell checking for CWSBLs is that there is limited data that is

available to feed large data driven language models. The largest publicly available corpus for

any SBL only has just over 20 million tokens (or running words), compared to that of English

which has more than 2 billion running words. Most SBLs have corpora whose sizes are less

than a million words. Given the type to token ratio of the CWSBL, these corpora have severe

limitations when it comes to supporting data driven language models. The challenge for these

languages is to improve the performance of language tools built on top of these corpora

without requiring them to be expanded.

Broadly speaking, the ultimate objective of this project is to develop a spell-checking

algorithm which increases the chances of recognising OoV words without increasing the size

of the input dictionary. The key aim is to maximise Error recall, the Negative Predicted Value

as well as the suggestion accuracy without using a larger dictionary to drive the spell checker.

Background to the requirements for MAShoKO

In this section we present the background to the requirements for MAShoKO. There is a need for a

software application to support spell-checking for Shona within a number of other software

applications that may receive input in Shona. Such a system should be able to check the validity of

given Shona words, indicate possible corrections for incorrectly spelt words and provide and analysis

of a given Shona word. The purpose of this application is to minimise the reliance on human editors to

pick up incorrect spellings in Shona documents that are captured in computer systems. It needs to be

able to do this without requiring access to an infinitely large dictionary of Shona words, which is not

available.

Requirements for MAShoKO

72 | P a g e

The generic requirements for a spell checker are well understood. At a minimum, it should be able to

take in a word and output a statement of its validity or not. Other requirements include the ability to

accept new words into its lexicon based on user input, as well as the ability to suggest corrections for

incorrectly spelt words.

Detailed Requirements

The system needs to be able to do the following

1. Take in a string of text

2. Check if the string is a valid Shona word

3. Return the validity status of the text

UML Use Cases for MAShoKO

Figure 3.6-1 documents the use cases that MAShoKO should be able to execute. In the following

passage, these use cases are described in detail. There are three main uses as shown below.

Check Spelling: In this use case the user provides a word whose spelling is to be checked. Executing

this use case initiates first the Check Syllabic Correctness use case and then depending on the

outcome of that use, the Search Dictionary use case, and then the Analyse verb and Analyse Noun use

cases.

Correct Spelling: A user can request that the spell checker corrects a given word. This use case

begins with the Check spelling use case. If the word is flagged as incorrect, the Get Suggestions use

case is executed. This in turn includes the Create suggestions use case. After the user is presented with

a list of suggestions, they may choose to add the original word to the custom dictionary, which

executes the Add word to Custom Dictionary use case. This use case optionally executes the Add

Custom Dictionary use case.

Analyse Word: A user can provide a word for which they require a morphological analysis. This use

case utilises the Analyse Verb and Analyse Noun use cases.

Discussion of Requirements

73 | P a g e

As previously stated, the requirements of a spell checker are relatively well understood. The main

requirement is for a user to be able to provide check the correctness of a word as well as to suggest

that a given word be added into the custom dictionary. In this version of MAShoKO, it is assumed

that words are presented individually, and their correctness is independent of the context within which

they are found.

74 | P a g e

Figure 3.6-1 Use Case Diagram for MAShoKO

3.7. Step 3: Design and Development

Within the DSRM methodology, problems can be solved by the use of various artefacts. These can

include constructs, models, methods, and instantiations. Design is an exercise in making choices and

taking trade-offs between potentially conflicting options. Such choices need to be made around the

features, architecture, and performance of the solution.

In this thesis, two key artifacts need to be developed to realise the objectives of this research. The first

one is a morphological analyser for Shona. The morphological analyser forms the basis for the word

recognition engine within the spell checker. The second key component required in this research is the

actual spell checker. Whilst it can be argued that the morphological analyser is a subsystem of the

spell checker, it is important to note that the morphological analyser envisaged in this research can be

used as a stand-alone application for the purposes of evaluating the morphology of Shona words. It

75 | P a g e

can also be used as the basis for a Shona parser by extending the model to cover complete sentences

and not just words. Other important considerations in the development of a knowledge based

morphological analyser include the number of word types that the finite state automata should cover.

Covering more word classes increases the accuracy of the morphological analyser. However, this

comes at the cost of more time and effort on the part of the researcher. The converse uses less time but

sacrifices accuracy. The right balance which delivers better accuracy than other methods need to be

established.

3.7.1. The Design of MAShoKO

This section presents the design of MAShoKO. Linked to the objectives of this thesis, the main

emphasis of this section is on the design of the algorithm for the spell checker. Key to the design of

MAShoKO is the adoption of the Spell Checking as Morphological Analysis (SCaMA) approach.

Spell checking is taken as a special case of morphological analysis. The argument is that all

morphologically valid words are also correctly spelt. It therefore follows that if a morphological

analyser can correctly segment a given word, that word can be assumed to be correct.

3.7.2. The MAShoKO approach to Shona Spell Checking

Figure 3.7-1 shows the high-level flow chart for the MAShoKO Spell Checking module. This is also

depicted in Figure 3.7-2 using a UML sequence diagram showing the various objects that are involved

in the spell-checking process.

76 | P a g e

Figure 3.7-1 Flow Diagram for MAShoKO Spell Checker

77 | P a g e

Figure 3.7-2- UML Sequence Diagram for MAShoKO Spell Checking Module

78 | P a g e

As the two diagrams show, MAShoKO performs spell checking in a number of increasingly complex

steps. The first step is to conduct a check on the validity of the syllabic composition of a word

presented to the spell checker. This is a computationally cheap operation and provides a quick way to

root out clearly misspelt words. Any word that contains invalid syllables is flagged as incorrectly

spelt.

The next step within MAShoKO is to check if the submitted word exists in either the built or the user

defined dictionary. This operation is relatively inexpensive in terms of computational time, being in

the order of O(n). If the word is found in the dictionary, the spell-checking process concludes with a

verification of the word as being correctly spelt. However, if the word is not found in either

dictionary, the more computationally intensive part of the process begins. First a morphological

analysis of the word, assuming that it is a verb is conducted. If a successful parse is completed, the

word is presumed to be correct. Should it fail this analysis, it is sent for further morphological analysis

– this time against the specification of nouns. Within the current implementation of MAShoKO, if it

fails both morphological analyses, the word is assumed to be incorrect and flagged as such.

3.7.3. High level system design

MAShoKO was designed to be available via three different interfaces within this research

project. The first manner in which it can be interacted with is via the command line. Second,

a RESTful Application Programmer’s Interface (API) was developed to expose the core

capabilities of the spell-checking engine. Third, MAShoKO was incorporated into a mini

application which was used to compare its performance to the Character Trigram Language

Model (CTLM) based Spell Checker.

79 | P a g e

Figure 3.7-3- MAShoKO Class Diagram

80 | P a g e

Figure 3.7-3 shows the classes that are implemented in MAShoKO. The main class is the

eponymous class MAShoKO. This class provides the functions required of the spell checking

application. It has two public properties and one private one. The private property is the name

and location of the default dictionary. The name and location of the Custom Dictionary as

well as the structure of the last analysed word are available as public properties.

The MAShoKO class exposes five public methods. The first method provides the

functionality to analyse a given word as previously described. This method is linked to the

spell checking method. The third method generates suggested corrections for a given

incorrect word. The last two methods provide the ability to add a custom dictionary as well as

to add words to it respectively.

In order to give effect to the above a number of Shona specific routines needed to be

developed. The first one of these is a Tokeniser for Shona text which is described in the next

subsection.

3.7.4. The Tokenizer

Within the context of a spell checker, a tokenizer splits the contents of a text document into individual

words. Conceptually this process is trivial as it is based on an understanding of the orthography for a

specific language. Many tokenizers exist for languages such as English, and if one were developing a

spell checker for English, there would be no need to develop a new one. However, Shona has an

orthography that differs from that of English. As a result, an English tokenizer does not always

tokenise Shona words correctly. One particular set of morphemes poses challenges for generic

tokenizers when they are applied to Shona: this is the n’ phoneme. English tokenizers consider the

apostrophe to be an indicator of the possessive and as such they separate the words that include this

morpheme into two parts using the apostrophe as a separator. In Shona, this tokenisation would be

incorrect. Apart from this, the rules for splitting a Shona text document into individual words is

similar to that for English. Specifically, Shona words are separated by white space, and punctuation

marks excluding the apostrophe that follows the letter n. Table 3.7.1 provides the pseudocode for the

tokenizer which applies this rule to tokenise a given document of Shona text.

81 | P a g e

i = 0
word(i) ← null string

While not end of file(document)
 nxtChar ← Get next character in document

 While nxtChar not (white space or punctuation mark excluding apostrophe)

 Word(i) ← Concatenate (word, nxtChar)
 nxtChar ← Get next character in document

 end

 i = i+ 1

return word

Table 3.7.1 Pseudocode for Shona Tokenizer

3.7.5. The Shona verb Morphological Analyser

The verb is the most complex morphological word type in all Bantu languages including Shona. Each

Shona verb is made up of up to 13 distinct morphemes as defined by Mberi in his 13-slot system. A

finite state representation of this 13-slot system was implemented as shown in Figure 3.7-4. Each state

of the FSA represents one of the slots in the verb slot system. Valid transitions show permissible

combinations of morphemes from one slot to the next. The elements that make up all the 13 slots,

except for the verb roots are finite and were easy to deduce. They are all monosyllabic in composition,

so the FSA consumes them one syllable at a time. The challenge is with the verb root. First verb roots

are not composed of a full set of open syllables. For example, the verb root <famb> (root of to walk)

has one full open syllable <fa>- and the syllable margin <-mb>. Since the length of verb roots is not

easy to identify ahead of time, the Morphological analyser switches its direction and analyses verbs in

backward fashion – consuming all the verb extensions, whose lengths are more determinate. Once all

the verb extensions have been consumed, the remaining text is considered to be a verb root. This is

checked against a dictionary of verb roots. If it matches, the word is accepted, otherwise it is rejected.

In theory, the list of verb roots is also finite. However, it is possible that a given corpus or dictionary

may not have a comprehensive listing of all potential verb roots. This implies that a FSA which aims

to recognise verbs may not be able to recognise all verb forms if it has to rely on a finite dictionary of

verb roots. Since the goal of this research is to maximise the recognition of OOV words, a heuristic

was developed to enable the FSA to accept verb roots that did not exist within the lexicon. Instead of

implementing the Shona Verb Morphological Analyser as a true FSA, the automaton is allowed to

read the last part of a verb starting from the back. This allows it to consume all the verb extensions

and the final vowel. After all these elements have been consumed, the remaining part of the verb is

checked against a dictionary of verb roots. If it is among these, the word is accepted as valid,

otherwise it is rejected.

82 | P a g e

Figure 3.7-4 - - Finite State representation of Mberi's 13 slot representation of the Shona Verb

The ShonaVerb Class implements the 13 slot system as a Finite State Machine. Starting with a start

state, it represents each of the slots as a state within the FSM. Each state has an associated public

method as shown in the class diagram in Figure 3.7-3. The method that runs the FSA is named

spellCheck, although it performs more than just a spell check. It walks through the FSA, storing

morphological information about each node that has been visited into the structure property. This is

the information that the analyse method of MAShoKO uses when it is run in morphological analysis

mode.

83 | P a g e

3.7.6. Shona Noun Morphological Analyser

The ShonaNoun Class is similar in anatomy to the ShonaVerb class. It is based on the same

StateMachine class and shares the same public and private properties with it. Given that

Shona nouns fall into one of 20 classes with most of the classes paired, the class has a few

more methods than the verb one. Each verb class is treated as a separate node within the

FSM. Since nouns can be genitivised by appending any one of a number of prefixes, an

additional node for genitivising nouns is added to this class.

3.7.7. Other parts of speech

One of the key design decisions made was to not implement morphological analysers for the

other parts of speech as their morphology is relatively simple. As a result, the likelihood of

encountering most of the words belonging to these classes in a dictionary is high.

3.7.8. MAShoKO RESTful API

A Simple RESTful API for MAShoKO was implemented using the flask web application

framework. The API implements two of the core functions of MAShoKO: i) the spell-

checking function and ii) the correction or word suggestion function.

3.7.9. MAShoKO and CTLM Comparison App

In order to enable the comparison of the performance of MAShoKO to the CTLM based spell

checker, a simple graphical user interface (GUI) app was developed. This application takes

in as input a text file, or user typed in text. It then runs spell checking on that text using both

the MAShoKO and CTLM spell checking engines, saving the results to two text boxes below

the main input text box. It also provides an indication of the number of OOV words that it

encounters so that the error rate of the two spell checkers against OOV words can be

calculated. Use of this application will be further discussed in section 4.5.

84 | P a g e

3.8. Step 4: Demonstration

The fourth step within the DSRM is to demonstrate the effectiveness of the delivered solution to solve

the problem for which it was designed. The guidelines for the methodology offer several possible

ways in which such a demonstration can be conducted These include the conduct of experiments,

simulating the problem, conducting case studies, or generating proofs. Within this study, the approach

that will be used to demonstrate the spell checker will be that of experimentation. The morphological

analysis-based spell checker’s performance will be compared with that of other models built using the

traditional approaches. Chapter 5 presents the materials and methods that will be used to conduct the

experiments to demonstrate the efficacy of this solution to resolve the problems identified in the

literature review.

3.9. Step 5: Evaluation

There is a strong link between demonstration and the evaluation of the solution. Evaluation requires

that the actual observed performance of the solution be reviewed against some expected or desired

benchmark. In conducting this evaluation, appropriate metrics need to be utilised for the specific

problem domain. Furthermore, such metrics have to be compared against meaningful benchmarks

where these are available.

The results of the evaluation of the solution developed in this thesis will be presented in Chapter 7.

This will be done using the metrics presented within Chapter 2. However, one of the challenges with

these metrics is that they do not explicitly consider the case of OOV words. Addressing this question

is one of the key focuses of Chapter 7 as the results of the evaluation are presented.

3.10. Step 6: Communication

The DSRM guidelines end with a recommendation that exhorts all researchers to communicate their

work to the appropriate research community. Whilst this thesis is one of the ways in which this study

will be communicated to the computational linguistics community working on CWSBLs, components

of the research will be submitted to relevant journals and conferences. Conclusion

85 | P a g e

The aim of this chapter was to provide an overview of the research methodology used to answer the

research questions for this study. It started with a general presentation of the methodologies that are

applicable to CS research and then narrowed down to the selection of Design Science Research as the

specific approach that will be used in this research. The DSRM variant of DSR was selected as the

specific approach to be utilised for this study. The methodology was chosen because of its fitness to

the specific objectives and the questions that this research seeks to answer. Finally, the steps of how

this research is to be conducted and how these tie in with the rest of this thesis was presented.

3.11. Chapter Summary

This chapter introduced the various methodologies that are available for use in Computing Science

Research. Considering the nature of the research question, the Design Science methodology is chosen.

There are several ways in which Design Science can be conducted. Each of these were considered,

after which the Design Science Research Methodology was chosen for this research. After this, the

procedure for conducting this type of research was presented in detail, leading to this conclusion.

86 | P a g e

“The important thing in science is not so much to obtain new facts as to discover new ways of

thinking about them.”

William Lawrence Bragg.

Chapter 4 - Materials and Methods used to demonstrate and

evaluate the solution

4.1. Introduction

This chapter will describe the materials and methods that were used to evaluate the performance of

the spell checker that was developed in the previous chapter. In doing this, this it will be setting the

stage for meeting research objectives 7 and 8. To recap, the progress made so far; of the eight

research objectives, RO1 and RO2 were addressed in Chapter 3 using the meta-narrative review of the

spell-checking literature for CWSBLs, RO3 to 6 were also covered in Chapter 3 as part of the

description of the design and development step of the DSR methodology.

The purpose of this chapter is to describe the materials and methods that were utilised to conduct the

experiments that were used to evaluate the performance of the MAShoKO spell checker against the

CTLM based spell checker.

The rest of this chapter proceeds as follows: first the Data collection method will be described. After

this, the experimental set up for testing the efficacy of the MAShoKO based spell checker against the

CTLM based spell checker will be described. This includes the types of measurements and metrics

that will be used to compare the performance of the two spell-checkers. The chapter will conclude

with a summary of the content covered here.

4.2. Data Sets - Change to method for collecting data

Three main data sources were used to develop and to test the spell checkers. The words used to

develop each of the spell checkers were acquired from Duramazwi Guru ReChiShona (DGS)

(Chimhundu, 2001) whilst the text from the one hundred thousand word Leipzig Corpus (LC)

(Goldhahn, Eckart, & Quasthoff, 2012) were used to test the spell checker. For the knowledge based

morphological analyser, the book A Descriptive Grammar of Shona (ADGS) by (Mpofu, Ngunga,

Mberi, & Matambirofa., 2013) was used as a source for the grammatical rules.

87 | P a g e

DGS is a monolingual Shona dictionary which, in its printed form, comprises of three main sections:

i) a front matter section which introduces the dictionary, provides guidance on its usage, and

introduces some key aspects of Shona grammar; ii) the main part of the dictionary which consists of

lexemes and their definitions; and iii) a section with various reference materials related to Shona

culture and language use. The data for the development of the spell checkers presented here was

sourced from the main dictionary section of DGS. This main section was provided as a pdf document.

The reason for this is that this is the section that speakers of Shona would refer to if they needed to

lookup any given word’s meaning.

The LC Collection is a publicly available set of corpora for about two hundred languages. Each of the

corpora are presented in the same format and they are sourced from comparable sources. Made up of

randomly selected sentences from each selected language, they contain materials taken from

newspapers and other randomly selected text from the web. Care is also taken to remove sentences

that are not in the language of the corpus as well as those that are not deemed to be sentences. All this

means that the corpora have a likelihood of being representative of the contemporary usage of their

content language on the internet. It is for this reason that the one hundred-thousand-word Shona LC

was chosen.

ADGS was written to cater for a diverse audience of readers with a special emphasis on university

students and lecturers, secondary school teachers, and researchers of Shona and Bantu languages in

general. It presents a descriptive rather than a prescriptive grammar. This means that it is a good

reference for the language as it is used by the speakers and writers making it a good reference for the

development of tools that are meant to be used by native speakers of the language.

The following subsections describe the process that was undertaken to acquire this data.

4.3. Data Pre-Processing - change to method for pre-processing data

DGR was obtained in pdf format and needed to be converted to a format that could be used to develop

the spell checkers. The following subsections describe the process used to extract the text from the

dictionary into the format required for the spell checker.

4.3.1. Extract Text from Dictionary

88 | P a g e

Each page of the dictionary section comprises of two columns of text. The first column is headed by

left justified text. This heading has the lexeme that is the first entry on that page. The second column

is also headed by a lexeme which is right justified. This lexeme indicates the last entry on that page. A

python script to extract the contents of DGR from the pdf document and convert it into a conventional

ascii text file was developed. This utility was built in using the PyPDF2 library for optical character

recognition (OCR). Listing 4.3-1 is the pseudocode for the logic applied by this utility to extract the

text from DGR.

Initialise Converted Text to null string

Open pdf document

Convert pages of pdf file to images

For each page image created

Convert page image into text

Append Text of appended page to Converted Text

Save Converted Text to Text File

Listing 4.3-1 – Convert PDF to Text

4.3.2. Extract List of words from Dictionary

A second utility to extract a list of all the words found in the dictionary was developed. This utility

takes the output of the first script as its input. It then tokenises this text document. After tokenization

three files are generated: i) a file that contains all the distinct words encountered in the dictionary; ii)

another file that contains each distinct word followed by a count of its incidence in the dictionary; and

iii) a file of all the sub word lexemes found in the dictionary as well as the counts of their incidence.

89 | P a g e

4.3.3. Extract Word List by part of speech

Another script to extract the lexemes defined in the dictionary was also implemented in python. First

the utility extracts all the verbs from the text document. The location of all the verbs that are defined

in the dictionary is established by checking for the transitive verb indicator symbol <it>’ or the

intransitive verb indicator <itik>. After indexing these locations, the program parses through the

dictionary text and extracts all the entries at these locations. A similar procedure was also used to

identify the locations of all the other parts of speech types in the dictionary. The output of each of

these searches was saved into separate files for each part of speech.

4.3.4. Get text data from Leipzig Corpus

Text from the Leipzig Corpus (LC) was used as the test data for the experiments. Word lists and

exemplar sentences for Shona were extracted from the LC. From the 2018 Shona LC, we extracted

sna-zw_web_2018_100_k-words, the one-hundred-thousand word Corpus.. This file is, like all of the

other LC files is formatted as follows: i) each entry in the file is comprised of four tab delimited

columns. ii) The first column contains the entry or line number. iii) Following the tab delimiter is the

presumed word. They are presumed words because not all the entries in each line are valid

orthographic words. iv) Column three is a repeat of column 2 and contains the same presumed word.

v) Last is a number indicating the frequency of the entry on that line. Each of these files was imported

into Microsoft Excel as tab delimited files. The words obtained were then compared with the words

acquired from DGS. Those words that did not occur in DGR were marked as OOV. Calculations of

the ratio of OOV to known words were done and the results tabulated.

4.4. Experimental Setup - Change to method to evaluate spell checkers

All three experiments used the same data sets, took the same measurements, and calculated the same

metrics

4.4.1. Overview

Each experiment consists of a test in which the spell checker is tasked with spell checking the text of

the Shona 100k word LC. Unlike in some previously reported work, no attempts were made to

generate synthetic errors into the text. Instead, the texts are to be tested in their original state. The

performance of each spell checker on the full set of words as well as on those words that do not occur

90 | P a g e

within DGR is noted and recorded as described in section 2.5.1. Performance metrics are then

calculated also as detailed in section 2.5.2.

4.4.2. Evaluation

The following measures were used to evaluate the performance of each of the spell checkers.

Measurements

We measure the number of words in DGR as well as those in the 100k word Shona LC. The number

of words occurring in the 100k word Shona LC that were not in DGR were noted and counted. For

each experiment, the number of words that each spell checker can correctly identify were also

counted. A similar count was also done of all the words that each was unable to identify. Counts of

the number of out of vocabulary words that each spell checker could correctly classify were also done.

Metrics

The previously discussed measurements were used to calculate the Standard metrics as defined in

Section 2.5.2. A key difference is that these metrics are also calculated just for the OoV words in

order to determine how well each spell checker performs on them. Additionally, these metrics are also

calculated by part of speech type.

4.5. Conducting the comparative spell checking experiments

The program 10 Compare MAShoKO to CTLM.py is executed. This program opens up the

interface shown in the screenshot in Figure 4.5-1.

Following this, the Open button is clicked, and this opens up a file dialogue box. From this the test

file “Shona_100k_words.txt” is selected. At this point, the interface of the program should look like

Figure 4.5-2.

The “Spell Check” button is now clicked. Once this is done, the program immediately starts

to write some output to the console as it analyses the words from the test file. After it has

completed the spell check task, the program presents a message box indicating the

completion status. Clicking OK on this status reveals the interface shown in Figure 4.5-3.

91 | P a g e

 Conducting

Figure 4.5-1-Screenshort of the Program "10 Compare MAShoKO to CTTLM" before a file is opened

Figure 4.5-2-Screenshort of the program after the test file has been opened

92 | P a g e

Figure 4.5-3 - Screenshot of the comparison program after spell checking the test document

After the program is done, the list of words identified as misspelt is copied from each of the two

boxes which represent the results of the N-gram and the MAShoKO based spell checker respectively.

These are copied into a spreadsheet containing all the words labelled based on their part of speech as

well as whether they are valid or invalid Shona words. A pivot table which gives the values for a

confusion matrix of each of the two methods is then generated and prepared.

4.6. MAShoKO and CTLM Source Code

The source code for all the classes, applications and the API developed are included as

Appendix 1 of this thesis. The data used to test the application as well as the results reported

in this are archived on GitHub at the following link https://github.com/Farayi/MAShoKO.

4.7. Reliability and Validity

The aim of this chapter is to present a method that evaluates the performance of a morphological

analyser-based spell checker as well as to compare it against an existing method. The experimental

method in the preceding sections adequately addresses both questions and should provide a reliable

and viable method to achieve these stated aims.

https://github.com/Farayi/MAShoKO

93 | P a g e

4.8. Chapter Summary

This chapter detailed the software artefacts and data required to evaluate the performance of the

MAShoKO spell checker against the CTLM benchmark that was previously developed by (Ndaba,

Suleman, Keet, & Khumalo, 2016). The procedure was to set up the experiment as well as conduct the

experiment. This was then followed by a discussion on the reliability and validity of the methods

presented here.

94 | P a g e

“Results! Why, man, I have gotten a lot of results! I have found several thousand things that won't

work.”

Thomas A. Edison

Chapter 5 - Results

5.1. Introduction

This chapter presents the results of the experiments that were conducted as part of this research. The

first section details the global findings about the datasets used in the experiments. Each of the

subsequent sections gives the detailed results of each of the experiments that were conducted on the

two baseline spell checkers as well as on the two morphological analysis-based spell checkers. After

this is a summary section which consolidates all the results before the conclusion.

5.2. Recall

Figure 5.2-1 shows the recall performance of the MAShoKO Spell checker versus the CTLM Spell

Checker on various word types as described in the previous chapter. The recall is expressed as a

percentage, and it is calculated for all the words in the sample of LC used to evaluate the performance

of the two spell checkers.

Figure 5.2-1- Comparison of the performance of the two spell checkers on various categories of

Shona words

5.3. Specificity

The specificity of the two spell checkers were calculated for each of the various word types as well as

for the full data set. The results of these calculations were graphed and shown in Figure 5.3-1.

80 85 90 95 100

Recall

Recall (%)

MaShoKO on “Pure Shona” words CTLM on “Pure Shona” Words

MaShoKO on OoV words CTLM on OoV Words

MAShoKO on all words in LC CTLM on all words in LC

95 | P a g e

Figure 5.3-1-Specificity of the two spell checkers on various categories of Shona words

5.4. Precision

Figure 5.4-1- Precision on various categories of Shona words

The precision of each of the two spell checkers is presented in Figure 5.4-1.

0 20 40 60 80 100

Specificity

Specificity %

MAShoKO on all words in LC MaShoKO on “Pure Shona” words

CTLM on “Pure Shona” Words MaShoKO on OoV words

CTLM on OoV Words CTLM on all words in LC

0 10 20 30 40 50 60 70 80 90 100

Precision

CTLM on OoV Words MAShoKO on all words in LC

MaShoKO on “Pure Shona” words CTLM on “Pure Shona” Words

MaShoKO on OoV words CTLM on all words in LC

96 | P a g e

5.5. Negative Predicted Value

After the negative predicted values were calculated, the results were tabulated and graphed. The graph

of these results is presented in Figure 5.5-1.

Figure 5.5-1 - Negative Predicted value on various categories of Shona words

in the results.

5.6. Accuracy

The accuracy of the two spell checkers on each of the specified word categories is presented in Figure

5.6-1.

 - 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00

Negative Predicted Value

MaShoKO on OoV words CTLM on OoV Words

MAShoKO on all words in LC MaShoKO on “Pure Shona” words

CTLM on “Pure Shona” Words CTLM on all words in LC

97 | P a g e

Figure 5.6-1-Spell checker accuracy for various categories of Shona words

5.7. F1 Score

The F1 scores for the two spell checkers are shown in Figure 5.7-1.

Figure 5.7-1-F1 Scores foe the two spell checkers across different word types

80 82 84 86 88 90 92 94 96 98 100 102

Accuracy

CTLM on “Pure Shona” Words MaShoKO on OoV words

CTLM on OoV Words MAShoKO on all words in LC

MaShoKO on “Pure Shona” words CTLM on all words in LC

90 92 94 96 98 100 102

F1

MaShoKO on “Pure Shona” words CTLM on “Pure Shona” Words

MaShoKO on OoV words CTLM on OoV Words

MAShoKO on all words in LC CTLM on all words in LC

98 | P a g e

5.8. Description of the results

The performance of the two spell checking methods were evaluated using six standard metrics. Each

metric was however extended to consider only the OOV words. The first metric that was used is recall

which was described in section 2.5.2. Comparison of recall for authentic Shona words are compared

against those on the OOV words and the subset of words that were used to evaluate the LC. The next

metric to be evaluated is specificity. This was also evaluated for the same segments of data as the

recall. Precision, Negative Predicted Value, Accuracy and the F1 score were calculated in similar

fashion for the same data partitions.

5.9. Chapter Summary

The results of the spell-checking experiments using the two engines were presented and described, the

next chapter is a discussion of these results.

99 | P a g e

“Curiosity begins as an act of tearing to pieces or analysis.”

Samuel Alexander

Chapter 6 - Discussion

6.1. Introduction

This chapter reviews and discusses the results that were presented in the previous chapter. It starts by

looking at the comparative performance of the two spell-checkers on various metrics, then some

analysis is performed on the similarities and differences between their performance. Next the key

similarities and differences and their implications on the future development of spell checkers are

discussed in detail. The chapter closes with a summary of the key findings of these experiments.

6.2. Overview

The results of the experiments that were carried out to compare the performance of two spell checkers

on a subset of the LC show that the hybrid approach developed in this thesis marginally outperforms

the CTLM that was previously used on the related isiZulu language on the full data set. Once the data

set is narrowed down to a mirror the assumptions on which both these models were built, the gap

between the MAShoKO based spell checker and the CTLM based one widens. This gap applies to all

metrics except that of error recall or specificity, where the CTLM outperforms MAShoKO by a

significant margin. The data used to train the model this performance improves significantly. The

current version of MAShoKO has a higher likelihood of misidentifying incorrect words than the

CTLM based checker does.

6.3. Limitations

A decision was taken to limit the number of word types that MAShoKO would be able to recognise. It

was specifically decided to only handle verbs, nouns, and some of the genitive forms of the nouns.

These choices were made to ensure that the scope of the project would be manageable. As a result of

this, there is no expectation that the current version of MAShoKO would have the ability to properly

identify OOV words other than nouns and verbs. Among the word types that it would not be able to

identify are the ideophones as well as any code switched words.

100 | P a g e

It was also decided to use the text of the monolingual DGR as the training corpus for both CTLM and

MAShoKO. Due to its monolingual nature, it only has pure Shona words and only those borrowed

words that are written in the official Shona orthography. Here pure Shona refers to only words that are

native to the language and all its dialects. Shona has a specific way of assimilating borrowed words

into its lexicon. Some of these methods include at least one of the following modalities: i) all syllables

are converted to open vowels - for example, the English word “paraffin” is converted to the Shona

word parafini where the last syllable changes from the closed syllable n to the open one ni; ii) the

letter b becomes the digraph bh - an example of this is in the word “bell” which, although its proper

name is dare in some dialects, can be rendered as bhero; iii) likewise d is replaced by dh, for example

“dollar” becomes dhora; iv) v by vh as in “visa” which becomes vhiza; v) all Ls are converted into

Rs as we saw in the “bell” to bhero example above; vi) and all Qs into Ks.

The two spell checkers were tested on LC, which is based on Shona text collected from the web. Such

Shona text does not always conform to the official orthography as will be discussed later. Both spell

checkers had poor error recall on this text, and this was mainly because it contains foreign words that

are written in ways that do not conform to the official orthography

6.4. Performance of Spell Checkers

The seventh objective of this project was to evaluate the performance of a spell checker that utilises a

morphological analyser as well as knowledge of the language. This objective is tied to the eighth

objective which is to establish how well such a spell checker performs against character n-gram

language model-based spell checkers. It has already been established that the performance of a spell

checker can be measured using a few standard metrics. This previous discussion also showed how

prior research did not explicitly call out the performance of spell checkers on out of vocabulary

words.

 From a user’s perspective a good spell checker is one that can correctly identify words that are

misspelt. It is as important for it to correctly identify wrongly spelt words as it is to not flag correctly

spelt words as being incorrect. Four standard metrics are typically used to measure the performance of

spell checkers in the literature. These are Lexical Recall - the extent to which the spell checker can

identify correctly spelt words. The second one is Error recall, which is sometimes referred to as

Specificity. This refers to the extent to which the spell checker can correctly pick up spelling errors. It

101 | P a g e

is an indicator of the number of incorrect words flagged by the system as a proportion of all the words

that are incorrect.

Precision is an indicator of proportion of well spelt words that are not flagged as incorrect. A high

precision indicates that the spell checker does not incorrectly identify correctly spelt words as

misspellings. Error precision, also referred to as Negative predicted value precision is like precision

except it is defined for the misspelt words. It gives the percentage of misspelt words that the system

was able to correctly identify. Two other measures are also used. The first one is accuracy, which

indicates the percentage of predictions that the spell checker made that were correct as a proportion of

all the calls that the system made. Finally, the F1 score is used to balance the precision and recall of

the system, although it does not have an intuitive explanation. However, a higher number is better

than a lower one.

The literature review showed that there is usually no explicit focus on the performance of spell

checkers on OOV words. This research includes a review of the usual metrics, but it adds a

comparison of these metrics for just OOV words. In this vein, the review of the performance of the

two spell checkers has been conducted in layers. First, their performance on the full LC is reviewed.

Then the analysis is narrowed down to only the OOV words. Last, and more contentiously, the review

is further narrowed down to just pure Shona words. The last choice is contentious as it could be

argued that the whole goal of building a model is to ensure that it generalises beyond the training data

that it is provided with. However, in this case, it is clear that the two types of Shona represented in the

training data and the one found in the LC are significantly different. This will be further expounded in

the following sections.

6.4.1. MAShoKO outperforms CTLM on Lexical Recall and matches it on

Precision

The MAShoKO based spell checker performed better than the CTLM one on lexical recall. This

means that, if a word is correct, MAShoKO has a higher chance of leaving it unflagged than the

CTLM spell checker does. On precision, the performance of the two spell checkers is

indistinguishable. When this evaluation is continued on OOV Words, MAShoKO’s performance has a

slightly bigger difference to that of CTLM. However, the difference is not as high when it comes to

OOV Words that conform to the DGS orthography.

102 | P a g e

6.4.2. Higher accuracy on MAShoKO

Comparing the accuracy of the spell checkers, MAShoKO outperforms CTLM on the full sample

dataset as well as on the OOV words. However, the performance of MAShoKO is marginally worse

than that of CTLM on the orthographically valid Shona words.

6.4.3. Poor Error Precision

The error precision of MAShoKO was 5.16% whilst that of CTLM was only 5% on the full 17,970-

word subset of the LC used to evaluate the two spell checkers. This means that either spell checker

correctly identified only that proportion of incorrectly spelt words. On this basis alone, the spell

checkers did not perform well. To answer this question, some further analysis needs to be performed.

It boils down to two key elements. The first one is the nature of the vocabulary used in LC versus the

vocabulary founds in DGS. LC contains more colloquial language which is written in a more informal

register which has a higher incidence of code switching, whilst DGS is more formal and is strictly

monolingual. - which is purer and more conformant to the orthodox orthography. Subsequent sections

will address this issue further. For now, suffice it to say that this poor showing on lexical recall

improves significantly when the subset of words that are morphologically similar to those in DGS are

used. The error precision metric was calculated for both MAShoKO and CTLM to evaluate their

performance on just the Shona words in the LC. In this case, CTLM’s error recall increases to 67.61%

whilst that of MAShoKO goes up to 75.47%

6.4.4. Lower Error Recall

The key area in which CTLM outshines MAShoKO is that of specificity, otherwise known as error

recall. Not only does CTLM do better than MAShoKO, but the gap between their performance is also

significant. This gap is 16% points when the subset of words that is similar to those in DGS is used,

whilst it is around 10% for all the other scenarios. This indicates that the CTLM model has a great

ability to correctly identify misspelt words in comparison to MAShoKO.

6.4.5. The incidence of foreign words in LC

The question of why both spell checkers fared badly on error recall is one that requires additional

attention. The tentative answer that was previously provided is that the words on which the two

models were trained are significantly different from those on which they were tested. This appears to

103 | P a g e

be a non-answer as one would (rightly) expect this to be the case. The value of a model is in the fact

that it can generalise to model previously unseen phenomenon. In this case the language used to

develop the spell checkers that used to evaluate it are significantly different from each other. This

indicates a need to review future approaches to developing and evaluating spell checkers for the

language. Specifically, it is important that the spell checker be developed using language that is in the

register that matches the texts that it will be used to spell check. This result is not new as similar

observations were made by (Keet & Khumalo, 2017). Reverting to the present study, we note that the

first key difference between the two is the higher incidence of foreign words in LC than those

encountered in DGS. Worse still, not all of these words conform to the expected Shona orthography.

Instead, they make heavy usage of code switching

The statistics of this situation should help illuminate the issue further. 827 (4.6%) of the 17,970 words

used to evaluate the performance of the two spell checkers are foreign words. The vast majority of

these are English words. Of these, many are proper nouns, or as they are referred to within NLP,

named entities. The non-English words are also dominated by proper nouns. A few of the remaining

words are abbreviations.

A second category of foreign words are found in genitive constructions in which the first part is a

class marker, and the rest of the word is the foreign word. Many of these do not follow the official

orthography in that they do not change the spelling to render the foreign words as Shona. 919 (5.11%)

of the words fall into this category. There is also a level of inconsistency in the way these words are

spelt by the different authors whose writings have been included in LC. Some of them put quotation

marks around the foreign words whilst others just include them with valid Shona class markers as if

they are proper Shona words. Table 7.4.5 provides an overview of the distribution of word correctness

categories encountered within LC. These categories were used as the gold standard to evaluate the

two spell checkers.

Error Classification of word Count of Words Percentage of Words

Valid - Shona word 15,981 88.93%

104 | P a g e

Valid - Shona plus Borrowed Word 919 5.11%

Valid - Borrowed Word 827 4.60%

Valid - Shona plus Number 103 0.57%

Incorrect Shona Word 51 0.28%

Incorrect - tokenisation error 43 0.24%

Valid - Numerical Value 25 0.14%

Valid Shona - ny' phoneme 6 0.03%

Invalid - Incorrect merge of words 4 0.02%

Valid - Shona Slang word 4 0.02%

105 | P a g e

Incorrect - Borrowed Word 3 0.02%

Valid - Shona word? 2 0.01%

Valid Borrowed word - unconventional orthography 2 0.01%

Grand Total 17,970 100.00%

Figure 6.4-1 Distribution of Categories of Word correctness within the sample of LC used to evaluate the spell checkers

6.4.6. Handling of Borrowed Words

Of the 3,555 words that the CTLM based spell checker marked as incorrect, 96% were false

negatives. Of these 89% were constructions that were composed of either valid borrowed words or

genitive and other combinations of Shona and borrowed words. This points to the need to incorporate

borrowed words into the spell checkers. This also means that the corpus used to train the spell

checkers needs to have more borrowed words, especially when they occurred in the genitive

constructions.

6.4.7. Handling of Borrowed Words

The convention in Shona when mentioning numbers is to concatenate the number to the genitive

marker or the specific adjective that it is being used with. For instance, the phrase “he has taken a

second wife” can be translated to “akatora mukadzi wechi2”. Here the “two” is included in the word

“wechi2”. Whilst the CTLM spell checker was able to correctly accept a number of these, the

MAShoKO one did not do as well. This is because the spell-checking engine within it was not

optimised to handle this specific scenario.

106 | P a g e

6.4.8. Handling of the nyn’ phoneme by MAShoKO

The MAShoKO based spell checker did not do well with all the words that included the nyn’ sound as

this was not included in the lexicon used to develop it. There is some debate around the validity of

this construction. Shona LC sourced most of its content from news websites like Kwayedza. That the

writers of such a newspaper use this construction is telling. At the very least it calls for additional

consideration for the validity of this phoneme. The grammar book that was the key reference for this

project aims to be a descriptive rather than a prescriptive one. The authors state that their intention is

to describe the language as it is used rather than how it ought to be. It therefore seems fair to assume

that faced with language data which shows such a high prevalence of this phoneme’s use, they would

incorporate it into the current orthography. The key issue for the designers of spell checkers for Shona

and other SBLs is to have a close working relationship with grammarians and lexicographers to

inform the choice of constructions that can be built into the language models.

6.5. Implications for the development of spell checkers for CWSBLs

One question that can be asked from the results of the experiments is whether it is worthwhile

investing the time and energy required to build a hand-written morphological analyser if it performs

so poorly on error recall? This is a fair question. For the time and effort required to build it, CTLM

does reasonably well. In fact, its performance confirms the conclusions of Ndaba et al that building

spell checkers for all CWSBL is now feasible. This begs the second question: When is it worthwhile

to invest the time and effort required to build a model like MAShoKO? The answer to this and the

previous question can be found in reviewing the instances that MASHoKO outperforms CTLM.

The Error Precision of MAShoKO on authentic Shona words is significantly higher than that of

CTLM. This means that it is better able to tell incorrect words than the CTLM model – correctly

identifying 3 out of every 4 wrong words while CTLM only manages just over 2 in every 3.

Considering the difference between the manner in which the two spell checkers determine the

correctness of a word that they have never seen before, this suggests that the MAShoKO model does

perform better than CTLM on words that it did not previously see. Unsurprisingly, MAShoKO does

not do well with word types that were not built into it. This means that the performance recorded here

is not the peak performance of MAShoko. Additional rules will further enhance its performance,

further widening the gap between it and that of CTLM.

107 | P a g e

6.6. Closing Comments on Morphological Analyser based spell checkers

MAShoKO demonstrated that it is possible to build a morphological analyser-based spell checker for

a CWSBL. The performance of such a spell checker is largely influenced by the rules that it

implements. The system’s performance on word types that it was not designed to accept will be poor

and this can tarnish its image.

6.7. Chapter Summary

This chapter discusses the results of the experiments that were carried out to evaluate the performance

of MAShoKO against the CTLM based spell checker. The metrics used to evaluate the two spell

checkers are presented, followed by an analysis of what these results mean for the research question.

108 | P a g e

“Without analysis, no synthesis”

Friedrich Engels

Chapter 7- Summary and Conclusion

7.1. Introduction

This chapter is a review of the research project. It starts by revisiting the research question before

sketching the literature review process. After this the design and review of the experiments that were

carried out to address the research question is briefly discussed. Finally, some views on possible

future directions of this work are given.

7.2. Overview

The motivation for embarking on this research was the observation that there is no extant, useful, and

widely available spell checker for Shona. Furthermore, even though there are spell checkers for other

related languages, it did not appear as if they fully addressed the challenges that arose from the nature

of the writing system used for Shona which lead to NLP systems encountering many new words in

real world usage. As a result, this study sought to find out the ways that other researchers have utilised

to improve the performance of their spell checkers on these OOV words. It also aimed at developing

new methods that would be optimised to perform well on OOV words. Specifically, it would develop

morphological analysis-based methods to address this question.

7.3. Review of Previous Approaches

A systematic literature review following the RAMESES meta-narrative review protocol was

conducted to evaluate the ways in which previous research projects have addressed the question of

OOV words in spell checkers for CWALs. It was found that there have been three broad themes in

this space. The first broad theme has been to handle spell checking as dictionary lookup. Within this

paradigm, the way in which OOV words have been addressed has been through the enhancement of

dictionary sizes using several synthetic word generation approaches. The first of these was the

development of morphological analysers to generate new words and then add them to a static

dictionary which would then be utilised in the final spell checker. Linguists evaluated the resultant

words to ensure that only valid words were added to the dictionaries. Spell checkers designed using

109 | P a g e

this method performed much better than those that did not have these additional words appended to

them. The second theme is similar in nature. However, instead of using morphological analysers to

generate the words, these appended new words by applying rules about likely words based on existing

words in the dictionary. They also managed to get modest results using this approach. The final and

most recent approach was that of using a CTLM to develop a data driven spell checker. Work

reported in this work has shown that these perform as well as the rules-based approaches.

7.4. MAShoKO based Hybrid Spell checker

In this research, a Morphological Analyser (MA) for Shona verbs, nouns and some of the genitive

nouns was developed. This MA was incorporated into a Hybrid spell checker which uses three

modalities to perform spell checking on Shona words. First, it does a dictionary check up. If this fails

to find a match, it checks to see if the word has valid syllables, flagging any that do not as incorrect.

Finally, it performs a morphological analysis of the words. This process is computationally expensive

as it involves several searches. As a result it is only performed on those words that have failed the last

two checks.

An experiment to evaluate the performance of MAShoKO against the CTLM based spell checker was

conducted. The two spell checkers were trained and/or developed using words obtained from the

DGC. After this, they were then presented with the words obtained from the 100k Shona LC. The

performance of both spell checkers on OOV as well as the full word lists were tabulated and

compared. It was found that the MAShoKO based spell checker did much better than the CTLM spell

checker on both sets of words. Specifically, on OOV, it had fewer false positives and false negatives.

A key challenge was with borrowed words as well as a number of noun modifications which are not

programmed into the FST.

7.5. Possible Future Directions

The research carried out in this thesis has demonstrated that spell checkers based on morphological

analysis of CWAL perform better than character n-grams. This morphological analysis requires the

manual codification of the language’s grammar, a process that is painstakingly slow and demanding

of the developers. The data driven paradigm is increasingly preferred for the development of NLP

systems. A key question to consider is whether the morphological analyser can be developed in a data

driven manner using either some unsupervised or a degree of supervised learning. One way which this

can be done is if the morphological analyser that was developed for this project is extended to cover

110 | P a g e

all parts of speech. Once this is completed, it can then be used to create a training corpus for a data

driven morphological analyser by providing labelled data.

A second potential future research direction is to evaluate the performance of these methods to

perform context sensitive or real world error detection. Without having conducted any analysis on this

question, it appears as if CTLM based spell checkers would fair even worse on this task as they are

incapable of maintaining longer term dependencies that would be required to check aspects such as

concordial agreement between nouns and other parts of speech in a sentence.

7.6. Conclusion

This research had eight objectives which were stated in Chapter 1. With respect to the first objective,

a review of the literature on the spell checking of CWSBLs revealed a paucity in research that

specifically addressed the question of OoV words. None of the previous research specifically

addressed the question of how to handle them. Neither did any of them attempt to maximise the

performance of their spell checkers on such words. This was not due to any lack of awareness of the

problem. Rather, previous approaches aimed to reduce the incidence of such words by increasing the

sizes of their dictionaries.

Given the above finding, the answer to the second research question, which is tied to the second

objective is that there were no approaches found to have been used to achieve this aim.

The third objective of this research was to develop a morphological analyser for Shona verbs and

nouns. The approach chosen to design such a morphological analyser was that of utilising a Finite

State Transducer, based on a Finite State Machine. Utilising textbooks of Shona Grammar and the

author’s knowledge of the language, a Morphological Analyser for Shona, dubbed MAShoKO was

designed.

The SCaMA framework was utilised to design a spell checker for Shona. This design has three main

constituent components. First it has a syllabic checker whose task is to confirm if a given words

consists of valid Shona syllables. Any words that have illegal syllables are by definition invalid Shona

words and are flagged as such. Those words that pass this initial test are then subjected to a simple

dictionary search. Any words that do not exist within the dictionary are then parsed by the

morphological analyser. Words that the morphological analyser fails to identify are also flagged as

111 | P a g e

invalid. The last component of the spell checker is the suggestion engine, which generates words that

are within one edit distance of the incorrectly spelt word.

The fifth and sixth research objectives were met by implementing MAShoKO and a MAShoKO based

spell checker in Python. Two versions of the spell checker were developed. First a RESTful API to

serve MAShoKO was developed using the Flask framework. Second a comparison application which

incorporated the MAShoKO spell checking engine and the character trigram based spell checking

engine used in previous research in order to compare their performance was developed. This GUI

application is based on the TKinter framework.

Utilising the comparison application mentioned above, experiments to compare the performance of

MAShoKO and the CTLM based spell checkers were conducted. The first one compared the

performance of the two on all words in the LC. On this comparison, the performance of both spell

checkers was marginally different.

The second comparison considered the eighth research objective and sixth research question

pertaining to the performance of the morphological analyser on OOV words. When compared to the

CTLM model, the MAShoKO model did significantly better on OoV words – especially on verbs and

nouns. This demonstrated that morphological analysis is an effective way for improving the

performance of a spell checker on OoV words for CWSBLs.

In summary, all eight objectives of this research were satisfied. The challenges that can be

encountered in the development of spell checkers that aim to maximise correct identification of OOV

words in SBLs, as well as the previous approaches used for these languages are now understood. A

morphological analyser for Shona was developed and it was used to build a spell checker whose

performance was evaluated and demonstrated to be superior to that of a previously developed CTLM

based approach.

112 | P a g e

113 | P a g e

References

Ahmadi, S. (2021). Hunspell for Sorani Kurdish Spell Checking and Morphological Analysis. arXiv

preprint arXiv:2109.06374.

Aikhenvald, A. Y. (2007). Typological dimensions in word-formation. Cambridge University Press.

Amaral, J. N. (2011). About computing science research methodology.

Anderson, S. R. (2015). The morpheme: Its nature and use. The Oxford handbook of inflection, 11-33.

Bakovic, E. (2003). Vowel harmony and stem identity.

Bauer, L. (2008). "Derivational morphology. Language and linguistics compass, 2(1), 196-210.

Bejan, C. (2017). English Words: Structure, Origin and Meaning: a Linguistic Introduction. Addleton

Academic Publishers.

Bilandzic, M., & Venable, J. (2011). Towards participatory action design research: adapting action

research and design science research methods for urban informatics. Journal of Community

Informatics, 7(3).

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., Arx, S. v., . . . et. (2021). On the

opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258.

Bonami, O., Boyé, G., Dal, G., Giraudo, H., & Namer, F. (2018). The lexeme in descriptive and

theoretical morphology. Language Science Press.

Bosch, S. E., & Eiselen, R. (2005). The effectiveness of morphological rules for an isiZulu spelling

checker. South African Journal of African Languages, 25(1), 5-36.

doi:10.1080/02572117.2005.10587246

Bradbury, H. (Ed.). (2015). The Sage handbook of action research. . Sage.

114 | P a g e

Burchfield, R. (1985). Frequency Analysis of English Usage: Lexicon and Grammar. By W. Nelson

Francis and Henry Kučera with the assistance of Andrew W. Mackie. Boston: Houghton

Mifflin. 1982. x+ 561. Journal of English Linguistics, 18(1), 64-70.

Chau, E. C., & Smith, N. A. (2021). Specializing Multilingual Language Models: An Empirical

Study. arXiv preprint arXiv:2106.09063.

Chimhundu, H. (Ed.). (2001). Duramazwi guru reChiShona. College Press in conjunction with the

African Languages Research Institute, University of Zimbabwe.

Ching, K. L. (2018). Tools Matter: Mediated Writing Activity in Alternative Digital Environments.

Written Communications, 35(3), 344-75.

Creutz, M., Hirsimäki, T., Kurimo, M., Puurula, A., Pylkkönen, J., Siivola, V. V., . . . Stolcke, A.

(2007). Morph-based speech recognition and modeling of out-of-vocabulary words across

languages. ACM Transactions on Speech and Language Processing (TSLP), 5(1), 1-29.

Damerau, F. J. (1964). "A technique for computer detection and correction of spelling errors. "

Communications of the ACM , 7(3), pp. 171-176.

Damian, A. J., Robinson, S., Manzoor, F., Lamb, M., Rojas, A., Porto, A., & Anderson., D. (2020). A

mixed methods evaluation of the feasibility, acceptability, and impact of a pilot project ECHO

for community health workers (CHWs). Pilot and feasibility studies, 1-11.

David M, E., Simons, G. F., & Fennig, C. D. (Eds.). (2021). Ethnologue: Languages of the World.

Twenty-fourth edition. Dallas, Texas: SIL International. Online version:

http://www.ethnologue.com.

de Bruijn, M., & Brinkman, I. (2018). Mobile Phone Communication in the Mobile Margins of

Africa: The ‘Communication Revolution’Evaluated from Below. In The Palgrave Handbook

of Media and Communication Research in Africa (pp. 225-241). Cham: Palgrave Macmillan.

115 | P a g e

de Schryver, G.-M., & Prinsloo, D. (2004). Spellcheckers for the South African languages, Part 1: The

status quo and options for improvement. South African Journal of African Languages, 24(1),

57-82.

De Varennes, F. (2017). "Language Rights as an Integral Part of Human Rights–A Legal

Perspective." . In Democracy and Human Rights in Multicultural Societies (pp. 115-125).

Routledge.

Dixon, R. M. (1977). Some Phonological Rules in Yidin^\rmy.". Linguistic Inquiry, 8(1), 1-34.

Doddapaneni, S., Ramesh, G., Kunchukuttan, A., Kumar, P., & Khapra, M. M. (2021). A primer on

pretrained multilingual language models. arXiv preprint arXiv:2107.00676.

Dodig-Crnkovic, G. (2002). Scientific methods in computer science. In Proceedings of the

Conference for the Promotion of Research in IT at New Universities and at University

Colleges in Sweden, Skövde, Suecia, (pp. 126-130).

Doke, C. M. (2005). Report on the Unification of the Shona Dialects: a Photographic Reprint with an

Introduction by Herbert Chimhundu. The Allex Project.

Drake, L. (2019). Frictionless Technologies: The Innovation of Human Obsolescence. Biennial

Conference of the Society for Philosophy and Technology. Texas. Retrieved from

https://posthumanity.ai/wp-content/uploads/2019/06/Laura-Drake-Frictionless-Technologies-

Human-Obsolescence-2019.pdf

Ducrot, O., & Todorov, T. (1972). Dictionnaire encyclopédique des sciences du langage. FeniXX.

Eifring, H., & Theil, R. (2015). Linguistics for Students of Asian and African Languages. 2005: 3.

Institutt for osteuropeiske og orientalske studier. Web , 5.

Enderby, J. L., Carroll, J. M., Tarczynski-Bowles, M. L., & Breadmore, H. L. (2021). The roles of

morphology, phonology, and prosody in reading and spelling multisyllabic words. Applied

Psycholinguistics, 1-21.

116 | P a g e

Fischhoff, B. (2013). The sciences of science communication. Proceedings of the National Academy

of Sciences, 110(Supplement 3), 14033-14039.

Fishman, J. A. (1991). Reversing language shift: Theoretical and empirical foundations of assistance

to threatened languages (Vol. 76). Multilinguual Matters.

Fortune, G. (1985). Shona Grammatical Constructions: Volume 1. Mercury Press.

Frischmann, B. a. (2016). Utopia: A Technologically Determined World of Frictionless Transactions,

Optimized Production, and Maximal Happiness. UCLA L. Rev. Discourse , 64, 372.

Gerz, D., Vulić, I., Ponti, E. M., Reichart, R., & Korhonen, A. (2018). On the Relation between

Linguistic Typology and (Limitations of) Multilingual Language Modeling. In Proceedings of

the 2018 Conference on Empirical Methods in Natural Language Processing (pp. 316-327).

Gezmu, A. M., Nürnberger, A., & Seyoum, B. E. (2018). Portable spelling corrector for a less-

resourced language: Amharic. In Proceedings of the Eleventh International Conference on

Language Resources and Evaluation (LREC 2018).

Goetze, T. S., & Abramson, D. (2021). Bigger Isn’t Better: The Ethical and Scientific Vices of Extra-

Large Datasets in Language Models. In 13th ACM Web Science Conference 2021 (pp. 69-75).

Goldhahn, D., Eckart, T., & Quasthoff, U. (2012). Building Large Monolingual Dictionaries at the

Leipzig Corpora Collection: From 100 to 200 Languages. In LREC (Vol. 29, pp. 31-43).

Greenberg, J. H. (1960). A quantitative approach to the morphological typology of language.

International journal of American linguistics, 26(3), 178-194.

Grefenstette, G., & Tapanainen., P. (1994). What is a word, what is a sentence?: problems of

Tokenisation.

Grobbelaar, L. A., & Kinyua, J. D. (2009, June 29). A spell checker and corrector for the native South

African language, South Sotho. Proceedings of the 2009 Annual Conference of the Southern

117 | P a g e

African Computer Lecturers' Association (pp. 50–59). New York, NY, USA: Association for

Computing Machinery. doi:10.1145/1562741.1562747

Grønvik, O. (1996). THE FOURTH ALLEX WORKSHOP UNIVERSITY OF ZIMBABWE.

Grønvik, O., & Chimhundu, H. (1998). Annual report for the Allex project in 1998. African

Languages Research Institute, University of Zimbabwe.

Grover, A. S., Van Huyssteen, G. B., & Pretorius, M. W. (2010). South African human language

technologies audit.

GÜNGÖR, O., GÜNGÖR, T., & ÜSKÜDARLI, S. (2019). .The effect of morphology in named entity

recognition with sequence tagging. Natural Language Engineering, 25(1), 147-169.

doi:doi:10.1017/S1351324918000281

Haspelmath, M. (2011). "On S, A, P, T, and R as comparative concepts for alignment typology.".

Hendrikse, R., & Mfusi, M. (2011). Circumfixes as emergent linguistic structures. South African

Journal of African Languages, 31(1), 41-53.

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in information systems

research. MIS quarterly, 75-105.

Hildebrandt, K. A. (2015). The prosodic word. The Oxford handbook of the word, 221-245.

Himoro, M. Y. (2020). Towards a Spell Checker for Zamboanga Chavacano Orthography. In

Proceedings of the 12th Language Resources and Evaluation Conference (pp. 2685-2697).

Janson, T. (1991-92). Southern Bantu and Makua. (R. K. Verlag, Ed.) prache und Geschichte in

Afrika, 12/13, pp. 63-106.

118 | P a g e

Jones, J., Podile, K., & Puttkammer, M. (2005). Challenges relating to standardization in the

development of an isiXhosa spelling checker. 25, 1-10.

doi:10.1080/02572117.2005.10587244

Joshi, P., Santy, S., Budhiraja, A., Bali, K., & Choudhury, M. (2020). The state and fate of linguistic

diversity and inclusion in the NLP world. arXiv preprint arXiv:2004.09095.

Kashyap, A. K. (2019). Language Typology. The Cambridge handbook of systemic functional

linguistics , 767-792.

Keet, C. M., & Khumalo, L. (2017, December). Evaluation of the effects of a spellchecker on the

intellectualization of isiZulu. Retrieved from http://pubs.cs.uct.ac.za/archive/00001233/;

http://pubs.cs.uct.ac.za/archive/00001233/01/KK17alternationSpellcheck.pdf

Khumalo, L. 2. (2017). The Design and Implementation of a Corpus Management System for the

isiZulu National Corpus. In In Abstracts of the 22nd International Conference of the African

Association for Lexicography. Conference of the Language Associations of Soutern Africa

(CLASA). Rhodes University, Grahamstown, South Africa (pp. 26-29).

Koskenniemi, K. (1984). A general computational model for word-form recognition and production.

In Proceedings of the 4th Nordic Conference of Computational Linguistics (NODALIDA

1983) (pp. 145-154).

Krause, T. A. (2012). Multiple tokenizations in a diachronic corpus. In Exploring Ancient Languages

through Corpora Conference (EALC) (Vol. 14).

Kukich, K. (1992). Techniques for automatically correcting words in text. Acm Computing Surveys

(CSUR) , 24(4), pp. 377-439.

Lebeaupin, B., Rauzy, A., & Roussel, J.-M. (2017). A language proposition for system requirements.

In 2017 Annual IEEE International Systems Conference (SysCon) (pp. 1-8). IEEE.

119 | P a g e

Leech, N. L., & Onwuegbuzie, A. J. (2010). Guidelines for conducting and reporting mixed research

in the field of counseling and beyond. Journal of Counseling & Development, 88(1), 61-69.

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions, and reversals.

Soviet physics doklady, 10(8), pp. 707-710.

Mabuya, R., Ramukhadi, P., Setaka, M., Wagner, V., & Zaanen, M. v. (Eds.). (2020). Proceedings of

the First Workshop on Resources for African Indigenous Languages. Proceedings of the First

Workshop on Resources for African Indigenous Languages.

Magwa, W. (2008). Language harmonization in Southern Africa: toward a standard unified Shona

orthography (SUSO) for Botswana, Mozambique and Zimbabwe. Dyke (Gweru, Zimbabwe),

3(2), 60-76.

Martini, I. D. (2016). Derivational of bound morpheme. International Research Journal of

Management, IT and Social Sciences, 3(1), 15-22.

Marzi, C., Blevins, J. P., Booij, G., & Pirrelli, V. (2020). Inflection at the morphology-syntax

interface. In In Word Knowledge and Word Usage (pp. 228-294). De Gruyter Mouton.

Mberi, N. E. (2006). The categorical status and functions of auxiliaries in Shona. ALLEX Project,

African Languages Research Institute, University of Zimbabwe.

Milambiling, J. (2018). The Universal Declaration of Linguistic Rights. In Language and Social

Justice in Practice (pp. 208-216). Routledge.

Miti, L. (2006). Comparative Bantu Morphology and Phonology.” . Cape Town: The Centre for

Advanced Studies for African Society.

Mjaria, F., & Keet, C. M. (2018). A Statistical Approach to Error Correction for isiZulu

Spellcheckers. (pp. 1 of 9–9 of 9). Gaborone: IEEE.

120 | P a g e

Mohammed, N., & Abdellah, Y. (2018). The vocabulary and the morphology in spell checker.

Procedia Computer Science, 127, 76-81.

Moors, C., Wilken, I., Calteaux, K., & Gumede, T. (2018). Human language technology audit 2018:

Analysing the development trends in resource availability in all South African languages. In

Proceedings of the Annual Conference of the South African Institute of Computer Scientists

and Information Technologiests, (pp. 296-304).

Mosel, U. (n.d.). A critical analysis of current definitions of lexeme and related linguistic terms.

Mpofu, N. .. (2007). The User Perspective in Lexicography: The Lemmatisation of Fixed Expressions

in" Duramazwi Guru reChiShona. Lexikos, 17.

Mpofu, N., Ngunga, A., Mberi, N. E., & Matambirofa., F. (2013). A descriptive grammar of Shona.

CROBOL Project.

Mukherjee, S. P. (2019). A guide to research methodology: An overview of research problems, tasks

and methods. CRC Press.

Ndaba, B., Suleman, H., Keet, C. M., & Khumalo, L. (2016, January). The Effects of a Corpus on

isiZulu Spellcheckers based on N-grams. Retrieved from

http://pubs.cs.uct.ac.za/archive/00001084/;

http://pubs.cs.uct.ac.za/archive/00001084/01/afrispeIST16crc.pdf

Neubig, G., Shruti, R., Alexis, P., MacKenzie, J., Li, H. C., Lee, M., & al, e. (2020). A Summart of the

First Workshop on Language Technology for Language Documentation and Revitalization.

arXiv[cs.CL]. Retrieved from http://arxiv.org/abs/2004.13203

Nijat, M., Hamdulla, A., & Tuerxun, P. (2019). The Methods for Reducing the Number of OOVs in

Chinese-Uyghur NMT System. In International CCF Conference on Artificial Intelligence,

(pp. 183-195). Singapore: Springer.

121 | P a g e

Nunamaker Jr, J. F., Chen, M., & Purdin, T. D. (1990). Systems development in information systems

research. Journal of management information systems, 7(3), 89-106.

Packard, J. L. (2000). The morphology of Chinese: A linguistic and cognitive approach. Cambridge

University Press.

Paggio, P. (2000). Spelling and grammar correction for Danish in SCARRIE. In Sixth Applied Natural

Language Processing Conference (pp. 255-261).

Park, H. H., Zhang, K. J., Haley, C., Steimel, K., Liu, H., & Schwartz, L. (2021). Morphology

Matters: A Multilingual Language Modeling Analysis. Transactions of the Association for

Computational Linguistics 9, 9, 261-276.

Peffers, K. T. (2007). A design science research methodology for information systems research.

Journal of management information systems, 24(3), 45-77.

Peffers, K., Tuunanen, T., & Niehaves, B. (2018). Design science research genres: introduction to the

special issue on exemplars and criteria for applicable design science research.

Piantadosi, S. T., Tily, H., & Gibson., E. (2012). "The communicative function of ambiguity in

language.". Cognition , 122(3), 280-291.

Pirinen, T. A. (2014). Weighted Finite-State Methods for Spell-Checking and Correction. Helsingin

yliopisto.

Powers, D. M. (2014). What the F-‐measure doesn’t measure…. Technical report, Beijing University

of Technology China & Flinders University, Australia.

Pries-Heje, J. R. (2007). Soft design science research: Extending the boundaries of evaluation in

design science research. In Proceedings from the 2nd International Conference on Design

Science Research in IT (DESRIST) (pp. 18-38).

122 | P a g e

Prinsloo D., J., & de Schryver, G.-M. (2003). Non-word error detection in current South African

spellcheckers. 21, 307-326. doi:10.2989/16073610309486351

Prinsloo, D. J., & Eiselen, R. (2005). Improving a lexicon-based spelling checker for Sesotho sa

Leboa. 25, 11-24. doi:10.1080/02572117.2005.10587245

Prinsloo, D., & Schryver., G.-M. d. (2004). Spellcheckers for the South African Languages, Part 2:

The Utilisation of Clusters of Circumfixes. South African Journal of African Languages,

24(1), 83-94.

Ralph, M. L., & Lambon, R. M. (2001). Lexical processes (word knowledge): psychological and

neural aspects. In The International Encyclopaedia of Social and Behavioral Sciences.

Elsevier BV.

Sapir, E. (1921). An introduction to the study of speech. Language, 1.

Schcolnik, M. (2018). Digital Tools in Academic Writing. Journal of Academic Writing, 8(1), 121-30.

Schütze, H. (1992). Word space. Advances in neural information processing systems, 5.

Seidenberg, M. S., & Gonnerman, L. M. (2000). Explaining derivational morphology as the

convergence of codes. Trends in Cognitive Sciences, 4(9), pp. 353-361.

doi:https://doi.org/10.1016/S1364-6613(00)01515-1

Sein, M. K., Henfridsson, O., Purao, S., Rossi, M., & Lindgren, R. (2011). Action design research.

MIS quarterly, 37-56.

Svenonius, P. (2018). Delimiting the syntactic word. Linguistics at Santa Cruz.

Tariq, T. R., Rana, M. A., Sultan, B., Asif, M., Rafique, N., & Aleem, S. (2020). An Analysis of

Derivational and Inflectional Morphemes. International Journal of Linguistics, 12(1), 83.

123 | P a g e

Twenge, J. M., & Spitzberg., B. H. (2020). Declines in non‐digital social interaction among

Americans, 2003–2017. Journal of Applied Social Psychology, 50(6), 363-367.

Umar, A. U. (2020). Infixes and Infixation Processes in Hausa Morphology.

Uszkoreit, H. (2000). Language Technology: A First Overview. German Research Center for

Artificial Intelligence, Saarbrücken.

Vaishnavi, V. K. (2007). Design science research methods and patterns: innovating information and

communication technology. Auerbach Publications.

Vaishnavi, V. K., & Kuechler, W. (2015). Design Science Research Methods and Patterns:

Innovating Information and Communication Technology. CRC Press.

Venter, E. (2019). Challenges for meaningful interpersonal communication in a digital era. HTS:

Theological Studies, 75(1), 1-6.

Vertanen, K., Gaines, D., Fletcher, C., Stanage, A. M., Watling, R., & Kristensson, P. O. (2019).

VelociWatch: Designing and evaluating a virtual keyboard for the input of challenging text.

In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (pp. 1-

14).

Vincent, R. (2019). A study of different data-driven and knowledge-based approaches for human

language technologies.

Warfield, D. (2010). IS/IT RESEARCH: A RESEARCH METHODOLOGIES REVIEW. Journal of

Theoretical & Applied Information Technology, 13.

Wong, G., Greenhalgh, T., Westhorp, G., Buckingham, J., & Pawson, R. (2013). RAMESES

publication standards: Meta‐narrative reviews. Journal of Advanced Nursing, 69(5), 987-

1004.

124 | P a g e

Yang, Z., Zhu, C., Sachidananda, V., & Darve., E. (2019). Out-of-Vocabulary Embedding Imputation

with Grounded Language Information by Graph Convolutional Networks. arXiv preprint

arXiv:1906.03753.

Yunus, A., & Masum, M. (2020). A Context Free Spell Correction Method using Supervised Machine

Learning Algorithms. International Journal of Computer Applications, 176(27), 36-41.

125 | P a g e

Appendix 1 – Code Listings

Listing 1 - Finite State Automata – using Bernd Klein’s code

-*- coding: utf-8 -*-

"""

Created on Thu Dec 10 23:09:56 2020

@author: Farayi Kambarami

"""

#This is the finite State Automaton based on Bernd Klein's implementation

class StateMachine:

 def __init__(self):

 self.handlers = {}

 self.startState = None

 self.endStates = []

 def add_state(self, name, handler, end_state=0):

 name = name.upper()

 self.handlers[name] = handler

 if end_state:

 self.endStates.append(name)

 def set_start(self, name):

 self.startState = name.upper()

 def run(self, cargo):

 self.__init__()

 result = False

 try:

 handler = self.handlers[self.startState]

 except:

 raise InitializationError("must call .set_start() before .run()")

 if not self.endStates:

 raise InitializationError("at least one state must be an end_state")

 while True:

 (newState, cargo) = handler(cargo)

 if newState.upper() in self.endStates:

 #print(cargo[2])

 if newState.upper() == "error_state".upper():

 result = False

 break

 else:

 result =True

 return result

 break

 else:

 handler = self.handlers[newState.upper()]

 result = False

 return result

126 | P a g e

Listing 2 - ShonaVerb.py : Morphological Analyser Shona Verbs

-*- coding: utf-8 -*-

"""

This code implements a morphological analyser for Shona Verbs

"""

negationOrmood ={"i","ha","nga"}

subjectConcords = {"ndi","nda",

"ti","ta","u","wa","mu","ma","a","va","i","ya","ri","ra","a","chi","cha","zvi","zva","i","dzi","dza","ru"

,"ra","rwu","rwa","ka","twu","twa","tu","hu","hwu","hwa","ku","kwa","pa","ku","mu","svi","sva","k

wu","kwa","ku","zi","za"} # "mwa"

tenseMarkers_slot1 = {"i","cha","no"}

negationSlot1 = {"si","sa"}

tenseMarkers_slot2={"chi","ka","do","ne","nga"}

negationSlot2 = {"si","ka","za", "sa"} # The last "sa" does not appear in Dr Mberi's slot system - to

validate with him

#negationSlot3 = {"si","sa"}

tenseMarkers_slot3 = {"chi","ka","zo"}

auxilliarySlot = {"ndo","mbo","ngo","zo","fum"}

objectConcords =

{"ndi","ti","ku","mu","mu","mu","va","u","i","ri","a","chi","zvi","i","dzi","ru","ru","ka","twu","tu","h

u","vu","ku","pa","ku","mu","svi","ku","ri"}

validSyllables = {"a","e","i","o","u"

,"b","bh","bw","bv","ch","d","dh","dy","dz","dzv","dzw","f","g","gw","h","hw","j","k","kw","m","m

b","mw","mv","mbw","mh","n","n'","n’","nd","ndy","ndw","ng","ngw","nj","njw","nh","nhw","nw","

ny","nz","nzv","nzvw","nzw","p","pf","pw","r","rw","s","sh","shw","sw","sv","svw","t","ts","tsw","ts

v","tsvw","ty","tw","v","vh","w","y","z","zh","zhw","zv","zw","zvw"}

vowels ={"a","e","i","o","u"}

genitive_prefixes ={"ne","wa", "we","wo", "va","ve","vo","ya","ye","yo", "ra", "re","ro",

"a","e","cha","che","cho","zva","zve","zvo","dza","dze","dzo","rwa","rwe","rwo","ka","ke","ko","twa

","twe","two","hwa","hwe","hwo","kwa","kwe","kwo","pa","pe","po","ma","me","mo","sva","sve","s

vo"}

from StateMachine import StateMachine # as sm

class ShonaVerb(StateMachine):

 structure = []

 def __init__(self):

 StateMachine.__init__(self)

 #shonaVerbFSA = StateMachine()

 StateMachine.add_state(self,"Start", self.start_transitions)

 StateMachine.add_state(self,"Negation_or_mood_state",self.negation_or_mood_transitions)

 StateMachine.add_state(self,"Subject_Concord_state",self.subject_concord_state_transitions)

StateMachine.add_state(self,"Tense_Markers_Slot1_State",self.tense_markers_slot1_state_transitions

)

 StateMachine.add_state(self,"Negation_Slot1_State",self.negation_slot_4_transitions)

 StateMachine.add_state(self,"Object_Concord_state",self.object_concord_transitions)

127 | P a g e

StateMachine.add_state(self,"Tense_Markers_Slot2_State",self.tense_marker_slot2_state_transitions)

StateMachine.add_state(self,"Tense_Markers_Slot3_State",self.tense_marker_slot3_state_transitions)

 StateMachine.add_state(self,"Auxilliary_state",self.auxilliary_state_transitions)

 StateMachine.add_state(self,"Negation_Slot6_State",self.negation_slot_6_transitions)

 StateMachine.add_state(self,"Root_State",self.root_state_transitions)

 StateMachine.add_state(self,"End_State",self.end_state_transitions, end_state=1)

 StateMachine.add_state(self,"error_state", None, end_state=1)

 StateMachine.add_state(self,"genitive_prefixes_state",self.genitive_transitions)

 StateMachine.set_start(self,"Start")

 self.structure = []

 #return ShonaVerbFSA

 def openStemDictionary(self):

 with open('dictionaries/madzitsi_eduramazwi.txt') as f:

 lines = f.read().splitlines()

 return lines

 def openDictionary(self):

 with open('dictionaries/Shona_words.txt') as f: #'DGR_vocab.txt') as f: # mazwi_eduramazwi

 words_dict = f.read().splitlines()

 return words_dict

 def syllabify(self,txt):

 syllables = []

 firstsyllable, restoftxt = self.splitfirstsyllable(txt)

 while len(restoftxt) > 0:

 syllables.append(firstsyllable)

 firstsyllable, restoftxt = self.splitfirstsyllable(restoftxt)

 ##print(firstsyllable)

 if len(firstsyllable) > 0:

 syllables.append(firstsyllable + txt[-1:])

 return syllables

 def hasValidSyllables(self,txt):

 itdoes = True

 chktxt = txt.lower()

 syllables = self.syllabify(chktxt)

 for syllable in syllables:

 if syllable[:-1] in validSyllables:

 #flash('{} is a valid syllable.'.format(syllable))

 itdoes= itdoes

 elif syllable in vowels:

 #flash('{} is a valid syllable.'.format(syllable))

 itdoes= itdoes

 else:

 #flash('{} is not a valid syllable'.format(syllable))

 itdoes= False

128 | P a g e

 #flash('{} has been checked and the statement of whether it has valid syllables has been found to

be {}'.format(txt,itdoes))

 return itdoes

 def hasValidSubwords(self,txt):

 word_list = self.openDictionary()

 found = False

 restoftxt = txt

 while (not found) and (len(restoftxt) > 2):

 firstsyllable, restoftxt = self.splitfirstsyllable(restoftxt)

 #flash('Split into <{}> and <{}>.'.format(firstsyllable, restoftxt))

 subword = restoftxt

 if subword in word_list:

 #flash('{} is a valid subword'.format(subword))

 found = True

 else:

 found=False

 #flash('{} has been checked and the statement of whether it has valid subwords has been found to

be {}'.format(txt,found))

 return found

 def hasValidStem(self,txt):

 #words_list = sv.openDictionary()

 stem_list = self.openStemDictionary()

 stem = "-" + txt

 ##print("stem is " + stem)

 found = stem in stem_list

 restoftxt = txt

 if not found:

 while (not found) and (len(restoftxt) > 2):

 firstsyllable, restoftxt = self.splitfirstsyllable(restoftxt)

 #flash('Split into <{}> and <{}>.'.format(firstsyllable, restoftxt))

 stem = restoftxt[:-1]

 stem = "-" + stem + "a"

 if stem in stem_list:

 #flash('{} is a valid stem'.format(stem))

 found = True

 else:

 found=False

 #flash('{} has been checked and the statement of whether it has valid stems has been found to be

{}'.format(txt,found))

 return found

 def presumedStem(self,txt):

 #words_list = sv.openDictionary()

 stem_list = self.openStemDictionary()

 stem = "-" + txt

 ##print("stem is " + stem)

 found = stem in stem_list

 restoftxt = txt

 if not found:

 while (not found) and (len(restoftxt) > 2):

 firstsyllable, restoftxt = self.splitfirstsyllable(restoftxt)

 #flash('Split into <{}> and <{}>.'.format(firstsyllable, restoftxt))

 stem = restoftxt[:-1]

129 | P a g e

 stem = "-" + stem + "a"

 if stem in stem_list:

 #flash('{} is a valid stem'.format(stem))

 found = True

 else:

 found=False

 stem = '' #''

 #flash('{} has been checked and the statement of whether it has valid stems has been found to be

{}'.format(txt,found))

 return stem[1:]

 def roteSpellCheck(self,txt):

 words_list = self.openDictionary()

 if txt in words_list:

 #print('Word {} found in our our dictionary'.format(txt))

 found = True

 else:

 if (self.hasValidStem(txt) or self.hasValidSubwords(txt)) and self.hasValidSyllables(txt):

 found = True

 else:

 found = False

 #if not found:

 #print('The word {} is not a known word.'.format(txt))

 return_val = found

 return return_val

 """

 This function splits a Shona word or the remaining part of the word into two components. The

first part is the

 first syllable in the word, or word fragmanent and the second part is the remainder of the word or

word segment.

 A syllable in Shona is defined as being composed of either a single vowel or a number of

consonants followed by a

 vowel.

 This function does not attempt to check for the validity of the syllables returned - by validity

here, we refer to

 whether the syllable conforms with the official shona orthography or not.

 """

 def splitfirstsyllable(self,txt):

 firstSyllable=""

 restOftext=""

 vowels={"a","e","i","o","u"}

 if len(txt) ==1 :

 firstSyllable=txt

 else:

 if len(txt) > 0:

 startChar=txt[0]

 ##print("startChar is : " +startChar)

 if startChar in vowels:

 firstSyllable = startChar

 restOftext = txt[1:]

 else:

130 | P a g e

 i=1

 nextChar=txt[i]

 firstSyllable=startChar

 while (nextChar not in vowels) and ((i+1) < len(txt)):

 firstSyllable= firstSyllable+nextChar

 i+=1

 nextChar=txt[i]

 if (i+1) != len(txt):

 firstSyllable=firstSyllable+nextChar

 restOftext = txt[len(firstSyllable):]

 return firstSyllable, restOftext

 """

 This function returns the verb root and a list of all the extensions that have been applied to it.

 It does this by searching for the known verb extensions from left to right in each verb.

 A known issue is that this greedy process finds stems even in words that do not have them.

 """

 def getExtension(self,txt):

 extensions=[]

 root = txt

 if txt[-4:] in ["erer","oror","urur","inur","enur","onor","arar"]:

 root=root[:-4]

 extensions.append(txt[-4:])

 elif txt[-3:] in ["idz","zvi"]:

 root=root[:-3]

 extensions.append(txt[-3:])

 elif txt[-2:] in ["is", "es","iw","ew","an","ir","er","ik","ek","ek","at","am","ar"]:

 root=root[:-2]

 extensions.append(txt[-2:])

 elif txt[-1:] in ["w"]:

 root=root[:-1]

 extensions.append(txt[-1:])

 return root, extensions

 """

 This function labels the extensions presented to it

 """

 def extensionType(self,txt):

 if txt in ("is","es"):

 extnType =("Causative or Intensive/ Yesakiso kana Yenyanyiso")

 elif txt in ("idz"):

 extnType="Causative/ Yesakiso"

 elif txt in ("w","iw","ew"):

 extnType = "Passive/ Yokuitwa"

 elif txt in ("an"):

 extnType = "Reciprocal|Associative/ Yokuitirana|Yokubatana"

 elif txt in ("ir","er"):

 extnType = "Applied|Benefective/ Yokuitira"

131 | P a g e

 elif txt in ("erer","oror","urur"):

 extnType = "Repetitive"

 elif txt in ("inur","enur","onor"):

 extnType = "Reversive"

 elif txt in ("ik","ek"):

 extnType = "Potential|Neuter/ Yegoneko|Yekwaniso"

 elif txt in ("at"):

 extnType = "Contactive/ Yokubatika"

 elif txt in ("am"):

 extnType = "Stative/ Yemamiriro"

 elif txt in ("ar","arar"):

 extnType = "Extensive/ Yetambanuko"

 elif txt in ("zvi"):

 extnType = "Reflexive/ Yekuzviitira"

 return extnType

 """

 This function identifies the verb root and the extension for the remaining portion of the verb after

all affix slots up to the Object

 Concord have been stripped from it.

 """

 def seperateRootFromExtensions(self,txt):

 root =txt

 extensions =[]

 noMoreExtns = False

 while not noMoreExtns:

 root, newExtns = self.getExtension(root)

 if newExtns == []:

 noMoreExtns = True

 else:

 extensions.extend(newExtns)

 return root, extensions

 def start_transitions(self,txt):

 firstsyllable, txt = self.splitfirstsyllable(txt)

 ##print(firstsyllable+ " [First Syllable]")

 if firstsyllable in negationOrmood:

 newState = "Negation_or_Mood_state"

 #print(firstsyllable + " [Negation or Mood]")

 self.structure.append(firstsyllable + " [Negation or Mood]")

 elif firstsyllable in subjectConcords:

 newState = "Subject_Concord_state"

 #print(firstsyllable + " [Subject Concord]")

 self.structure.append(firstsyllable + " [Subject Concord]")

 elif firstsyllable in genitive_prefixes:

 newState = "genitive_prefixes_state" #Otherwise write Genitive Transitions method

 #print(firstsyllable + " [Genitive Prefix]")

132 | P a g e

 self.structure.append(firstsyllable + " [Genitive_prefix]")

 else:

 newState = "error_state"

 return (newState, txt)

 def negation_or_mood_transitions(self,txt):

 orgTxt = txt

 newState = "Subject_Concord_state"

 firstsyllable, txt = self.splitfirstsyllable(txt)

 if firstsyllable in subjectConcords:

 newState = "Subject_Concord_state"

 #print(firstsyllable + " [Subject Concord]")

 self.structure.append(firstsyllable + " [Subject Concord]")

 else:

 newState = "Root_State"

 txt=orgTxt

 # #print(firstsyllable + " [Subject Concord]")

 return(newState,txt)

 def subject_concord_state_transitions(self,txt):

 orgTxt = txt

 firstsyllable, txt = self.splitfirstsyllable(txt)

 # #print(firstsyllable+ " [First Syllable]")

 if firstsyllable in tenseMarkers_slot1:

 newState = "Tense_Markers_Slot1_State"

 #print(firstsyllable + " [Tense Marker]")

 self.structure.append(firstsyllable + " [Tense Marker]")

 elif firstsyllable in tenseMarkers_slot2:

 newState= "Tense_Markers_Slot2_state"

 #print(firstsyllable + "[Tense Marker Slot 2]")

 self.structure.append(firstsyllable + "[Tense Marker Slot 2]")

 elif firstsyllable in negationSlot1:

 newState = "Negation_Slot1_State"

 #print(firstsyllable + " [Negation Slot 4]")

 self.structure.append(firstsyllable + " [Negation Slot 4]")

 elif firstsyllable in objectConcords:

 newState = "Object_Concord_state"

 #print(firstsyllable + " [Object Concord]")

 self.structure.append(firstsyllable + " [Object Concord]")

 elif firstsyllable in auxilliarySlot:

 if firstsyllable == "bvi":

 firstsyllable, txt = self.splitfirstsyllable(txt)

 firstsyllable = "bviro"

 elif firstsyllable == "fu":

 firstsyllable, txt = self.splitfirstsyllable(txt)

 firstsyllable = "fumo"

 newState = "Auxilliary_State"

 #print(firstsyllable + " [Auxilliary]")

 self.structure.append(firstsyllable + " [Auxilliary]")

 else:

 newState = "Root_State"

 txt=orgTxt

133 | P a g e

 return(newState, txt)

 def negation_slot_4_transitions(self,txt):

 orgTxt = txt

 firstsyllable, txt = self.splitfirstsyllable(txt)

 if firstsyllable in tenseMarkers_slot1:

 newState = "Tense_Markers_Slot1_State"

 #print(firstsyllable + " [Tense Marker]")

 self.structure.append(firstsyllable + " [Tense Marker]")

 elif firstsyllable in tenseMarkers_slot2:

 newState= "Tense_Markers_Slot2_state"

 #print(firstsyllable + "[Tense Marker Slot 2]")

 self.structure.append(firstsyllable + "[Tense Marker Slot 2]")

 elif firstsyllable in negationSlot2:

 newState = "Negation_Slot6_State"

 #print(firstsyllable + " [Negation slot 6]")

 self.structure.append(firstsyllable + " [Negation slot 6]")

 elif firstsyllable in tenseMarkers_slot3:

 newState = "Tense_Markers_Slot3_state"

 #print(firstsyllable + " [Tense Marker Slot 3]")

 self.structure.append(firstsyllable + " [Tense Marker Slot 3]")

 elif firstsyllable in objectConcords:

 newState = "Object_Concord_state"

 #print(firstsyllable + " [Object Concord]")

 self.structure.append(firstsyllable + " [Object Concord]")

 else:

 newState = "Root_State"

 #print("Not yet handled, the first syllable was ", firstsyllable)

 self.structure.append("Not yet handled, the first syllable was " + firstsyllable)

 txt = orgTxt

 return(newState,txt)

 def tense_markers_slot1_state_transitions(self,txt):

 orgTxt = txt

 firstsyllable, txt = self.splitfirstsyllable(txt)

 # #print(firstsyllable+ " [First Syllable]")

 if firstsyllable in tenseMarkers_slot2:

 newState = "Tense_Markers_Slot2_State"

 #print(firstsyllable + " [Tense Marker]")

 self.structure.append(firstsyllable + " [Tense Marker]")

 elif firstsyllable in objectConcords:

 newState = "Object_Concord_state"

 #print(firstsyllable + " [Object Concord]")

 self.structure.append(firstsyllable + " [Object Concord]")

 elif firstsyllable in auxilliarySlot:

 if firstsyllable == "bvi":

 firstsyllable, txt = self.splitfirstsyllable(txt)

 firstsyllable = "bviro"

 elif firstsyllable == "fu":

 firstsyllable, txt = self.splitfirstsyllable(txt)

 firstsyllable = "fumo"

 newState = "Auxilliary_State"

 #print(firstsyllable + " [Auxilliary]")

 self.structure.append(firstsyllable + " [Auxilliary]")

134 | P a g e

 else:

 newState = "Root_State"

 txt=orgTxt

 #print(txt + " [Inflected Root]")

 return(newState,txt)

 def auxilliary_state_transitions(self,txt):

 orgTxt = txt

 firstsyllable, txt = self.splitfirstsyllable(txt)

 # #print(firstsyllable+ " [First Syllable]")

 if firstsyllable in objectConcords :

 newState = "Object_Concord_state"

 #print(firstsyllable + " [Object Concord]")

 self.structure.append(firstsyllable + " [Object Concord]")

 elif firstsyllable in auxilliarySlot:

 if firstsyllable == "bvi":

 firstsyllable, txt = self.splitfirstsyllable(txt)

 firstsyllable = "bviro"

 elif firstsyllable == "fu":

 firstsyllable, txt = self.splitfirstsyllable(txt)

 firstsyllable = "fumo"

 newState = "Auxilliary_State"

 #print(firstsyllable + " [Auxilliary]")

 self.structure.append(firstsyllable + " [Auxilliary]")

 else:

 newState = "Root_State"

 txt=orgTxt

 return(newState,txt)

 def negation_slot_6_transitions(self,txt):

 orgTxt = txt

 firstsyllable, txt = self.splitfirstsyllable(txt)

 if firstsyllable in tenseMarkers_slot3:

 newState = "Tense_Markers_Slot3_state"

 #print(firstsyllable + " [Tense Marker Slot 3]")

 self.structure.append(firstsyllable + " [Tense Marker Slot 3]")

 else:

 newState = "Root_State"

 txt = orgTxt

 return(newState,txt)

 def object_concord_transitions(self,txt):

 newState = "Root_state"

 ##print(txt + "[need to figure out what to do here]")

 return(newState,txt)

 def tense_marker_slot2_state_transitions(self,txt):

 orgTxt = txt

 firstsyllable, txt = self.splitfirstsyllable(txt)

 if firstsyllable in tenseMarkers_slot3:

 newState = "tense_markers_slot3_state"

135 | P a g e

 #print(firstsyllable+ " [Tense marker slot 3]")

 self.structure.append(firstsyllable+ " [Tense marker slot 3]")

 elif firstsyllable in objectConcords:

 newState = "Object_Concord_state"

 #print(firstsyllable + " [Object Concord]")

 self.structure.append(firstsyllable + " [Object Concord]")

 elif firstsyllable in negationSlot2:

 newState = "Negation_Slot6_State"

 #print(firstsyllable + " [Negation slot 6]")

 self.structure.append(firstsyllable + " [Negation slot 6]")

 elif firstsyllable in auxilliarySlot:

 if firstsyllable == "bvi":

 firstsyllable, txt = self.splitfirstsyllable(txt)

 firstsyllable = "bviro"

 elif firstsyllable == "fu":

 firstsyllable, txt = self.splitfirstsyllable(txt)

 firstsyllable = "fumo"

 newState = "Auxilliary_State"

 #print(firstsyllable + " [Auxilliary]")

 self.structure.append(firstsyllable + " [Auxilliary]")

 else:

 # ToDo: Add other transitions here

 newState = "Root_State"

 txt=orgTxt

 return(newState,txt)

 def tense_marker_slot3_state_transitions(self,txt):

 orgTxt = txt

 firstsyllable, txt = self.splitfirstsyllable(txt)

 if firstsyllable in objectConcords:

 newState = "Object_Concord_state"

 #print(firstsyllable + " [Object Concord]")

 self.structure.append(firstsyllable + " [Object Concord]")

 else:

 newState = "Root_State"

 txt = orgTxt

 return(newState, txt)

 def genitive_transitions(self,txt):

 orgTxt = txt

 firstsyllable, txt = self.splitfirstsyllable(txt)

 if firstsyllable in subjectConcords:

 newState = "Subject_Concord_state"

 self.structure.append(firstsyllable + " [Subject Concord]")

 elif firstsyllable in objectConcords:

 newState = "Object_Concord_state"

 self.structure.append(firstsyllable + " [Object Concord]")

 else:

 newState = "error_state"

 txt = orgTxt

 return(newState, txt)

 def root_state_transitions(self,txt):

136 | P a g e

 ##print("In root transitions with text = ", txt)

 finalVowel = txt[-1:]

 extensions=[]

 root = txt[:-1]

 root, extensions = self.seperateRootFromExtensions(root)

 if self.presumedStem(root+"a") == (root+"a"):

 #if self.hasValidStem(root + "a"):

 #print(root + " [Root]")

 self.structure.append(root + " [Root]")

 elif extensions:

 if self.hasValidStem(root + extensions[-1] + "a"):

 root = root + extensions[-1]

 extensions.remove(extensions[-1])

 #print(root + " [Root]")

 self.structure.append(root + " [Root]")

 #elif self.presumedStem == txt.lower(): #Added line

 # self.structure.append(txt + "[root]")

 # newState ="End_State"

 else:

 newState = "error_state"

 #self.structure.append(root + "[Invalid Verb Root]")

 return (newState, txt)

 if extensions != []:

 extensions.reverse()

 num_extns = len(extensions)

 for i in range(num_extns):

 #print(extensions[i], " [Extension ", i+1,"]", self.extensionType(extensions[i]))

 extens = extensions[i] + " [Extension " + str(i+1) +"]" + str(

self.extensionType(extensions[i]))

 self.structure.append(extens)

 if finalVowel not in vowels:

 newState = "error_state" # "End_State" #

 self.structure.append(finalVowel + " [Invalid Final vowel]")

 else:

 #print(finalVowel+" [Final Vowel]")

 self.structure.append(finalVowel+" [Final Vowel]")

 newState ="End_State"

 #package = (root, extensions,finalVowel)

 return(newState,txt)

 def end_state_transitions(self,package):

 done =1

 #print("Verb Accepted with root ", package[0], " and extensions ",package[1], "and final vowel

",package[2])

 return done

 def spellCheck(self,txt):

 retValue = self.run(txt)

 if retValue:

 retValue = True

 else:

 retValue = False

137 | P a g e

 return retValue

138 | P a g e

Listing 3 – ShonaNoun.py : Morphological Analyser for Shona Nouns

-*- coding: utf-8 -*-

"""

This program implements a morphological analyser for Shona Nouns

"""

negationOrmood ={"i","ha","nga"}

subjectConcords = {"ndi","nda",

"ti","ta","u","wa","mu","ma","a","va","i","ya","ri","ra","a","chi","cha","zvi","zva","i","dzi","dza","ru"

,"ra","rwu","rwa","ka","twu","twa","tu","hu","hwu","hwa","ku","kwa","pa","ku","mu","mwa","svi","

sva","kwu","kwa","ku","zi","za"}

tenseMarkers_slot1 = {"i","cha","no"}

negationSlot1 = {"si","sa"}

tenseMarkers_slot2={"chi","ka","do","ne","nga"}

negationSlot2 = {"si","ka","za", "sa"} # The last "sa" does not appear in Dr Mberi's slot system - to

validate with him

#negationSlot3 = {"si","sa"}

tenseMarkers_slot3 = {"chi","ka","zo"}

auxilliarySlot = {"ndo","mbo","ngo","zo","fu","bvi"} #"fumo","bviro"}

objectConcords =

{"ndi","ti","ku","mu","mu","mu","va","u","i","ri","a","chi","zvi","i","dzi","ru","ru","ka","twu","tu","h

u","vu","ku","pa","ku","mu","svi","ku","ri"}

validSyllables =

{"b","bh","bw","ch","d","dh","dy","dz","dzv","f","g","h","hw","j","k","kw","m","mb","mw","mbw","

mh","n","n'","nd","ndy","ndw","ng","ngw","nh","nw","ny","nz","nzv","nzw","p","r","rw","s","sh","s

w","sv","t","ty","tw","v","vh","w","y","z","zh","zhw","zv","zw"}

noun_prefixes = {"mu","va","mi","ri","ma","chi","zvi","i","dzi","ru","ka","tu","ku","pa","svi","zi"}

noun_stems = {"komana","sikana","adhivhoketi","dhokota","chiremba","basa","gwaro","chikwari"}

vowels ={"a","e","i","o","u"}

genitive_prefixes ={"ne","wa", "we","wo", "va","ve","vo","ya","ye","yo", "ra", "re","ro",

"a","e","cha","che","cho","zva","zve","zvo","dza","dze","dzo","rwa","rwe","rwo","ka","ke","ko","twa

","twe","two","hwa","hwe","hwo","kwa","kwe","kwo","pa","pe","po","ma","me","mo","sva","sve","s

vo"}

from StateMachine import StateMachine # as sm

try:

 import cPickle as pickle

except:

 import pickle as pkl

class ShonaNoun(StateMachine):

 structure = {}

 class_1_nouns = []

 class_1a_nouns = []

 class_1b_nouns = []

 class_2_nouns = []

 class_2a_nouns = []

139 | P a g e

 class_2b_nouns = []

 class_3_nouns = []

 class_4_nouns = []

 class_5_nouns = []

 class_6_nouns = []

 class_7_nouns = []

 class_8_nouns = []

 class_9_nouns = []

 class_10_nouns = []

 class_11_nouns = []

 class_12_nouns = []

 class_13_nouns = []

 class_14_nouns = []

 class_15_nouns = []

 class_16_nouns = []

 class_17_nouns = []

 class_17a_nouns = []

 class_18_nouns = []

 class_19_nouns = []

 class_21_nouns = []

 #nounStems = []

 class_1_stems = []

 class_1a_stems = []

 class_3_stems = []

 class_5_stems = []

 class_7_stems= []

 class_9_stems= []

 class_10_stems = []

 class_11_stems = []

 class_12_stems = []

 class_14_stems = []

 class_14_stems = []

 class_16_stems = []

 class_18_stems = []

 class_21_stems = []

 verbStems = []

 def __init__(self):

 StateMachine.__init__(self)

 #shonaVerbFSA = StateMachine()

 StateMachine.add_state(self,"Start", self.start_transitions)

 StateMachine.add_state(self,"noun_prefixes_state",self.noun_prefix_transitions)

 StateMachine.add_state(self,"noun_stem_state",self.noun_stem_transitions)

 StateMachine.add_state(self,"Class_1_or_3_state",self.class_1_or_3_transitions)

 StateMachine.add_state(self,"Class_2_state",self.class_2_transitions)

 StateMachine.add_state(self,"Class_2b_state",self.class_2b_transitions)

 StateMachine.add_state(self,"Class_6_or_10_state",self.class_6_or_10_transitions)

 StateMachine.add_state(self,"Class_4_state",self.class_4_transitions)

 StateMachine.add_state(self,"Class_7_state",self.class_7_transitions)

 StateMachine.add_state(self,"Class_11_state",self.class_11_transitions)

 StateMachine.add_state(self,"Class_12_state",self.class_12_transitions)

 StateMachine.add_state(self,"Class_14_state",self.class_14_transitions)

140 | P a g e

 StateMachine.add_state(self,"Class_15_or_17_state",self.class_15_or_17_transitions)

 StateMachine.add_state(self,"Class_16_state",self.class_16_transitions)

 StateMachine.add_state(self,"Class_19_state",self.class_19_transitions)

 StateMachine.add_state(self,"Class_21_state",self.class_21_transitions)

 StateMachine.add_state(self,"genitive_prefixes_state",self.genitive_transitions)

 StateMachine.add_state(self,"End_State",self.end_state_transitions, end_state=1)

 StateMachine.add_state(self,"error_state", None, end_state=1)

 StateMachine.set_start(self,"Start")

 self.structure = []

 nounClasses = pkl.load(open("e:/data/programming/python/Shona NLP/Language

Modelling/Dictionaries/nounClasses.p","rb"))

 self.class_1_nouns, self.class_1a_nouns,self.class_1b_nouns,self.class_2_nouns,

self.class_2a_nouns, self.class_2b_nouns, self.class_3_nouns,self.class_4_nouns, self.class_5_nouns,

self.class_6_nouns, self.class_7_nouns, self.class_8_nouns, self.class_9_nouns, self.class_10_nouns,

self.class_11_nouns, self.class_12_nouns, self.class_13_nouns, self.class_14_nouns,

self.class_15_nouns, self.class_16_nouns, self.class_17_nouns, self.class_17a_nouns,

self.class_18_nouns, self.class_19_nouns, self.class_21_nouns = nounClasses

 nounStems = pkl.load(open("e:/data/programming/python/Shona NLP/Language

Modelling/Dictionaries/nounClass_stems.p","rb"))

 #class_stems = [class_1_stems, class_1a_stems, class_5_stems, class_7_stems, class_9_stems,

class_10_stems]

 self.class_1_stems,self.class_1a_stems, self.class_3_stems,

self.class_5_stems,self.class_7_stems, self.class_9_stems, self.class_10_stems, self.class_11_stems,

self.class_12_stems, self.class_14_stems, self.class_15_stems, self.class_16_stems,

self.class_18_stems, self.class_21_stems = nounStems

 #return ShonaVerbFSA

 def openStemDictionary(self):

 with open('dictionaries/madzitsi_eduramazwi.txt') as f:

 lines = f.read().splitlines()

 return lines

 def openDictionary(self):

 with open('dictionaries/Shona_words.txt') as f: #'DGR_vocab.txt') as f: # mazwi_eduramazwi

 words_dict = f.read().splitlines()

 return words_dict

 def syllabify(self,txt):

 syllables = []

 firstsyllable, restoftxt = self.splitfirstsyllable(txt)

 while len(restoftxt) > 0:

 syllables.append(firstsyllable)

 firstsyllable, restoftxt = self.splitfirstsyllable(restoftxt)

 ##print(firstsyllable)

 if len(firstsyllable) > 0:

141 | P a g e

 syllables.append(firstsyllable + txt[-1:])

 return syllables

 def hasValidSyllables(self,txt):

 itdoes = True

 chktxt = txt.lower()

 syllables = self.syllabify(chktxt)

 for syllable in syllables:

 if syllable[:-1] in validSyllables:

 #flash('{} is a valid syllable.'.format(syllable))

 itdoes= itdoes

 elif syllable in vowels:

 #flash('{} is a valid syllable.'.format(syllable))

 itdoes= itdoes

 else:

 #flash('{} is not a valid syllable'.format(syllable))

 itdoes= False

 #flash('{} has been checked and the statement of whether it has valid syllables has been found to

be {}'.format(txt,itdoes))

 return itdoes

 def hasValidSubwords(self,txt):

 word_list = self.openDictionary()

 found = False

 restoftxt = txt

 while (not found) and (len(restoftxt) > 2):

 firstsyllable, restoftxt = self.splitfirstsyllable(restoftxt)

 #flash('Split into <{}> and <{}>.'.format(firstsyllable, restoftxt))

 subword = restoftxt

 if subword in word_list:

 #flash('{} is a valid subword'.format(subword))

 found = True

 else:

 found=False

 #flash('{} has been checked and the statement of whether it has valid subwords has been found to

be {}'.format(txt,found))

 return found

 def hasValidStem(self,txt):

 #words_list = sv.openDictionary()

 stem_list = self.openStemDictionary()

 found = False

 restoftxt = txt

 while (not found) and (len(restoftxt) > 2):

 firstsyllable, restoftxt = self.splitfirstsyllable(restoftxt)

 #flash('Split into <{}> and <{}>.'.format(firstsyllable, restoftxt))

 stem = restoftxt[:-1]

 stem = "-" + stem + "a"

 if stem in stem_list:

 #flash('{} is a valid stem'.format(stem))

 found = True

 else:

 found=False

142 | P a g e

 #flash('{} has been checked and the statement of whether it has valid stems has been found to be

{}'.format(txt,found))

 return found

 def roteSpellCheck(self,txt):

 words_list = self.openDictionary()

 if txt in words_list:

 #print('Word {} found in our our dictionary'.format(txt))

 found = True

 else:

 if (self.hasValidStem(txt) or self.hasValidSubwords(txt)) and self.hasValidSyllables(txt):

 found = True

 else:

 found = False

 #if not found:

 #print('The word {} is not a known word.'.format(txt))

 return_val = found

 return return_val

 """

 This function splits a Shona word or the remaining part of the word into two components. The

first part is the

 first syllable in the word, or word fragmanent and the second part is the remainder of the word or

word segment.

 A syllable in Shona is defined as being composed of either a single vowel or a number of

consonants followed by a

 vowel.

 This function does not attempt to check for the validity of the syllables returned - by validity

here, we refer to

 whether the syllable conforms with the official shona orthography or not.

 """

 def splitfirstsyllable(self,txt):

 firstSyllable=""

 restOftext=""

 vowels={"a","e","i","o","u"}

 if len(txt) ==1 :

 firstSyllable=txt

 else:

 if len(txt) > 0:

 startChar=txt[0]

 ##print("startChar is : " +startChar)

 if startChar in vowels:

 firstSyllable = startChar

 restOftext = txt[1:]

 else:

 i=1

 nextChar=txt[i]

 firstSyllable=startChar

 while (nextChar not in vowels) and ((i+1) < len(txt)):

 firstSyllable= firstSyllable+nextChar

 i+=1

 nextChar=txt[i]

143 | P a g e

 if (i+1) != len(txt):

 firstSyllable=firstSyllable+nextChar

 restOftext = txt[len(firstSyllable):]

 return firstSyllable, restOftext

 def start_transitions(self,txt):

 orgTxt = txt

 firstsyllable, txt = self.splitfirstsyllable(txt)

 # #print(firstsyllable+ " [First Syllable]")

 # if orgTxt in self.class_1_nouns:

 # newState = "Class_1_or_3_state"

 # #print(firstsyllable + " [Class 1 or 3]")

 # self.structure.append(firstsyllable + " [Class 1 or 3 Noun_prefix]")

 if firstsyllable == "mu": #noun_prefixes:

 newState = "Class_1_or_3_state"

 #print(firstsyllable + " [Class 1 or 3]")

 self.structure.append(firstsyllable + " [Class 1 or 3 Noun_prefix]")

 elif firstsyllable == "a":

 nxtsyllable, rst = self.splitfirstsyllable(txt)

 if nxtsyllable == "nya":

 newState = "noun_stem_state"

 #print(firstsyllable + nxtsyllable + " [Class 2b]")

 self.structure.append(firstsyllable + " [Class 2b Noun_prefix]")

 #txt = rst

 else:

 newState = "Class_2_state"

 #print(firstsyllable + " [Class 2]")

 self.structure.append(firstsyllable + " [Class 2 Noun_prefix]")

 elif firstsyllable == "va":

 nxtsyllable, rst = self.splitfirstsyllable(txt)

 if nxtsyllable == "na":

 newState = "Class_2b_state"

 #print(firstsyllable + nxtsyllable + " [Class 2b]")

 self.structure.append(firstsyllable + nxtsyllable + " [Class 2b Noun_prefix]")

 txt = rst

 elif nxtsyllable == "nya":

 newState = "noun_stem_state"

 #print(firstsyllable + nxtsyllable + " [Class 2b]")

 self.structure.append(firstsyllable + " [Class 2b Noun_prefix]")

 #txt = rst

 else:

 newState = "Class_2_state"

 #print(firstsyllable + " [Class 2]")

 self.structure.append(firstsyllable + " [Class 2 Noun_prefix]")

 elif firstsyllable == "ma":

 nxtsyllable, rst = self.splitfirstsyllable(txt)

 if nxtsyllable == "dzi":

144 | P a g e

 newState = "Class_6_or_10_state"

 #print(firstsyllable + nxtsyllable + " [Class 6]")

 self.structure.append(firstsyllable + " [Class 6 Noun_prefix]")

 txt = rst

 else:

 newState = "Class_6_or_10_state"

 #print(firstsyllable + " [Class 6 or 10]")

 self.structure.append(firstsyllable + " [Class 6 Noun_prefix]")

 elif firstsyllable == "mi":

 newState = "Class_4_state"

 #print(firstsyllable + " [Class 4]")

 self.structure.append(firstsyllable + " [Class 4 Noun_prefix]")

 elif firstsyllable in ("chi","cha"):

 newState = "Class_7_state"

 #print(firstsyllable + " [Class 7]")

 self.structure.append(firstsyllable + " [Class 7 Noun_prefix]")

 elif firstsyllable in ("zvi","zva","zvu"):

 newState = "Class_7_state"

 #print(firstsyllable + " [Class 8 prefix]")

 self.structure.append(firstsyllable + " [Class 8 Noun_prefix]")

 elif firstsyllable in ("ru","rwa","gwa", "rwe", "gwe", "gu"):

 newState = "Class_11_state"

 #print(firstsyllable + " [Class 11 prefix]")

 self.structure.append(firstsyllable + " [Class 11 Noun_prefix]")

 elif firstsyllable == "ka":

 newState = "Class_12_state"

 #print(firstsyllable + " [Class 12 prefix]")

 self.structure.append(firstsyllable + " [Class 12 Noun_prefix]")

 elif firstsyllable == "tu":

 newState = "Class_12_state"

 #print(firstsyllable + " [Class 12 prefix]")

 self.structure.append(firstsyllable + " [Class 12 Noun_prefix]")

 elif firstsyllable in ("u","hu"):

 newState = "Class_14_state"

 #print(firstsyllable + " [Class 14 prefix]")

 self.structure.append(firstsyllable + " [Class 14 Noun_prefix]")

 elif firstsyllable in ("ku"):

 newState = "Class_15_or_17_state"

 #print(firstsyllable + " [Class 15 or 17 prefix]")

 self.structure.append(firstsyllable + " [Class 15 or 17 Noun_prefix]")

 elif firstsyllable in ("pa"):

 newState = "Class_16_state"

 #print(firstsyllable + " [Class 16 prefix]")

 self.structure.append(firstsyllable + " [Class 16 Noun_prefix]")

 elif firstsyllable in ("svi"):

 newState = "Class_19_state"

 #print(firstsyllable + " [Class 19 prefix]")

 self.structure.append(firstsyllable + " [Class 19 Noun_prefix]")

 elif firstsyllable in ("zi"):

 newState = "Class_21_state"

 #print(firstsyllable + " [Class 21 prefix]")

 self.structure.append(firstsyllable + " [Class 21 Noun_prefix]")

 elif firstsyllable in noun_prefixes:

145 | P a g e

 newState = "noun_prefixes_state"

 ##print(firstsyllable + " [Negation or Mood]")

 self.structure.append(firstsyllable + " [Noun_prefix]")

 elif firstsyllable in genitive_prefixes:

 newState = "genitive_prefixes_state" #Otherwise write Genitive Transitions method

 #print(firstsyllable + " [Genitive Prefix]")

 self.structure.append(firstsyllable + " [Genitive_prefix]")

 else:

 txt = orgTxt

 newState = "noun_stem_state"

 self.structure.append("[]" + " Noun Prefix] first syllable was " +firstsyllable)

 return (newState, txt)

 def noun_prefix_transitions(self,txt):

 '''

 TODO:

 Have an IF statement per Noun Class

 Also look at nouns that are formed from verbs

 '''

 orgTxt = txt

 if txt in noun_stems:

 newState = "End_State"

 self.structure.append(txt + " [Noun Stem]")

 else:

 newState = "error_state"

 self.structure.append(txt + " [Unknown Noun Stem")

 txt=orgTxt

 return(newState,txt)

 def class_1_or_3_transitions(self,txt):

 if txt in self.class_1_stems:

 newState = "End_State"

 self.structure.append(txt + " [Class 1 Noun stem]")

 #print(txt + " Class 1 stem")

 elif txt in self.class_3_stems:

 newState = "End_State"

 self.structure.append(txt + " [Class 3 Noun stem]")

 #print(txt + " Class 3 stem")

 elif txt in self.class_18_stems:

 newState = "End_State"

 self.structure.append(txt + " [Class 18 Noun stem]")

 #print(txt + " Class 18 stem")

 else:

 newState = "error_state"

 self.structure.append(txt + " [Unknown Noun]")

 #print(txt + " has not been assigned a noun Class")

 return(newState, txt)

 def class_2_transitions(self,txt):

 if txt in self.class_1_stems:

146 | P a g e

 newState = "End_State"

 self.structure.append(txt + " [Class 1 Noun stem]")

 #print(txt + " Class 2 stem")

 elif txt in self.class_1a_nouns:

 newState = "End_State"

 self.structure.append(txt + " [Class 1a Noun]")

 else:

 newState = "error_state"

 self.structure.append(txt + " [Unknown Noun]")

 return(newState, txt)

 def class_2b_transitions(self, txt):

 orgTxt = txt

 modtxt = "a" + txt

 firstsyllable, txt = self.splitfirstsyllable(orgTxt)

 if firstsyllable == "nya":

 newState = "noun_stem_state"

 txt = orgTxt

 elif txt in self.class_1a_stems:

 newState = "End_State"

 self.structure.append(orgTxt + " [Class 1a Noun stem]")

 #print(txt + " Class 1a stem")

 elif txt in self.class_1_stems:

 newState = "End_State"

 self.structure.append(txt + " [Class 1 Noun stem]")

 #print(txt + " Class 1a stem")

 elif modtxt in self.class_1a_stems:

 newState = "End_State"

 self.structure.append(txt + " [Class 1a Noun stem]")

 elif orgTxt in self.class_1a_nouns:

 newState = "End_State"

 self.structure.append(orgTxt + " [Class 1a Noun]")

 else:

 newState = "error_state"

 #print(txt + " [No class 2b stem found]")

 self.structure.append(txt + " [Unknown Noun]")

 return(newState, txt)

 def class_4_transitions(self, txt):

 if txt in self.class_3_stems:

 newState = "End_State"

 self.structure.append(txt + " [Class 3 Noun stem]")

 #print(txt + " Class 3 stem")

 else:

 newState = "error_state"

 self.structure.append(txt + " [Unknown Noun]")

 #print(txt + " has not been assigned a noun Class")

 return(newState, txt)

 def class_6_or_10_transitions(self, txt):

 modtxt = "a" + txt

 if txt in self.class_1a_stems:

 newState = "End_State"

147 | P a g e

 self.structure.append(txt + " [Class 1a Noun stem]")

 #print(txt + " Class 1a stem")

 elif modtxt in self.class_1a_stems:

 newState = "End_State"

 self.structure.append(txt + " [Class 1a Noun stem]")

 #print(txt + " Class 1a stem")

 elif txt in self.class_5_stems:

 newState = "End_State"

 self.structure.append(txt + " [Class 5 Noun stem]")

 #print(txt + " Class 5 stem")

 elif txt in self.class_9_stems:

 newState = "End_State"

 self.structure.append(txt + " [Class 9 Noun stem]")

 #print(txt + " Class 9 stem")

 elif txt in self.class_11_stems:

 newState = "End_State"

 self.structure.append(txt + " [Class 11 Noun stem]")

 #print(txt + " Class 11 stem")

 else:

 newState = "error_state"

 #print(txt + " [No class 6 stem found]")

 self.structure.append(txt + " [Unknown Noun]")

 return(newState, txt)

 def class_7_transitions(self, txt):

 orgTxt = txt

 firstsyllable, txt = self.splitfirstsyllable(txt)

 if orgTxt in self.class_7_stems:

 newState = "End_State"

 self.structure.append(orgTxt + " [Class 7 Noun stem]")

 #print(txt + " Class 7 stem")

 elif firstsyllable == "mu": #noun_prefixes:

 newState = "Class_1_or_3_state"

 #print(firstsyllable + " [Class 1 or 3]")

 self.structure.append(firstsyllable + " [Class 1 or 3 Noun_prefix]")

 elif firstsyllable == "va":

 nxtsyllable, rst = self.splitfirstsyllable(txt)

 if nxtsyllable == "na":

 newState = "Class_2b_state"

 #print(firstsyllable + nxtsyllable + " [Class 2b]")

 self.structure.append(firstsyllable + " [Class 2b Noun_prefix]")

 txt = rst

 else:

 newState = "Class_2_state"

 #print(firstsyllable + " [Class 2]")

 self.structure.append(firstsyllable + " [Class 2 Noun_prefix]")

 elif firstsyllable == "ma":

 nxtsyllable, rst = self.splitfirstsyllable(txt)

 if nxtsyllable == "dzi":

 newState = "Class_6_or_10_state"

 #print(firstsyllable + nxtsyllable + " [Class 6]")

 self.structure.append(firstsyllable + " [Class 6 Noun_prefix]")

148 | P a g e

 txt = rst

 else:

 newState = "Class_6_or_10_state"

 #print(firstsyllable + " [Class 6 or 10]")

 self.structure.append(firstsyllable + " [Class 6 Noun_prefix]")

 elif firstsyllable == "mi":

 newState = "Class_4_state"

 #print(firstsyllable + " [Class 4]")

 self.structure.append(firstsyllable + " [Class 4 Noun_prefix]")

 elif firstsyllable in ("chi","cha"):

 newState = "Class_7_state"

 #print(firstsyllable + " [Class 7]")

 self.structure.append(firstsyllable + " [Class 7 Noun_prefix]")

 elif firstsyllable in ("zvi","zva","zvu"):

 newState = "Class_7_state"

 #print(firstsyllable + " [Class 8 prefix]")

 self.structure.append(firstsyllable + " [Class 8 Noun_prefix]")

 elif firstsyllable in ("ru","rwa","gwa", "rwe", "gwe", "gu"):

 newState = "Class_11_state"

 #print(firstsyllable + " [Class 11 prefix]")

 self.structure.append(firstsyllable + " [Class 11 Noun_prefix]")

 elif firstsyllable == "ka":

 newState = "Class_12_state"

 #print(firstsyllable + " [Class 12 prefix]")

 self.structure.append(firstsyllable + " [Class 12 Noun_prefix]")

 elif firstsyllable == "tu":

 newState = "Class_12_state"

 #print(firstsyllable + " [Class 12 prefix]")

 self.structure.append(firstsyllable + " [Class 12 Noun_prefix]")

 elif firstsyllable in ("u","hu"):

 newState = "Class_14_state"

 #print(firstsyllable + " [Class 14 prefix]")

 self.structure.append(firstsyllable + " [Class 14 Noun_prefix]")

 elif firstsyllable in ("ku"):

 newState = "Class_15_or_17_state"

 #print(firstsyllable + " [Class 15 or 17 prefix]")

 self.structure.append(firstsyllable + " [Class 15 or 17 Noun_prefix]")

 elif firstsyllable in ("pa"):

 newState = "Class_16_state"

 #print(firstsyllable + " [Class 16 prefix]")

 self.structure.append(firstsyllable + " [Class 16 Noun_prefix]")

 elif firstsyllable in ("svi"):

 newState = "Class_19_state"

 #print(firstsyllable + " [Class 19 prefix]")

 self.structure.append(firstsyllable + " [Class 19 Noun_prefix]")

 elif firstsyllable in ("zi"):

 newState = "Class_21_state"

 #print(firstsyllable + " [Class 21 prefix]")

 self.structure.append(firstsyllable + " [Class 21 Noun_prefix]")

 elif firstsyllable in noun_prefixes:

 newState = "noun_prefixes_state"

 ##print(firstsyllable + " [Negation or Mood]")

 self.structure.append(firstsyllable + " [Noun_prefix]")

149 | P a g e

 else:

 newState = "error_state"

 self.structure.append(txt + " [Unknown Noun]")

 #print(txt + " has not been assigned a noun Class")

 return(newState, txt)

 def class_11_transitions(self, txt):

 if txt in self.class_11_stems:

 newState = "End_State"

 self.structure.append(txt + " [Class 11 Noun stem]")

 #print(txt + " Class 11 stem")

 else:

 newState = "error_state"

 self.structure.append(txt + " [Unknown Noun]")

 #print(txt + " has not been assigned a noun Class")

 return(newState, txt)

 def class_12_transitions(self, txt):

 if txt in self.class_12_stems:

 newState = "End_State"

 self.structure.append(txt + " [Class 12 Noun stem]")

 #print(txt + " Class 12 stem")

 else:

 newState = "error_state"

 self.structure.append(txt + " [Unknown Noun]")

 #print(txt + " has not been assigned a noun Class")

 return(newState, txt)

 def class_14_transitions(self, txt):

 if txt in self.class_14_stems:

 newState = "End_State"

 self.structure.append(txt + " [Class 14 Noun stem]")

 #print(txt + " Class 14 stem")

 else:

 newState = "error_state"

 self.structure.append(txt + " [Unknown Noun]")

 #print(txt + " has not been assigned a noun Class")

 return(newState, txt)

 def class_15_or_17_transitions(self,txt):

 if txt in self.class_15_stems:

 newState = "End_State"

 self.structure.append(txt + " [Class 15 Noun stem]")

 #print(txt + " Class 15 stem")

 else:

 nxtsyllable, rst = self.splitfirstsyllable(txt)

 if nxtsyllable == "sa":

 if rst in self.verbStems:

 newState = "End_State"

 self.structure.append(txt + " [Negative Noun stem]")

 #print(txt + " Negative Noun stem")

 else:

 newState = "error_state"

 self.structure.append(txt + " [Unknown Noun]")

150 | P a g e

 #print(txt + " has not been assigned a noun Class")

 elif rst in self.verbStems:

 newState = "End_State"

 self.structure.append(txt + " [Negative Noun stem]")

 #print(txt + " Negative Noun stem")

 else:

 newState = "error_state"

 self.structure.append(txt + " [Unknown Noun]")

 return(newState, txt)

 def class_16_transitions(self, txt):

 if txt in self.class_16_stems:

 newState = "End_State"

 #print(txt + " Class 16 stem")

 self.structure.append(txt + " [Class 16 Noun stem]")

 else:

 newState = "error_state"

 self.structure.append(txt + " [Unknown Noun]")

 return(newState, txt)

 def class_19_transitions(self,txt):

 orgTxt = txt

 firstsyllable, txt = self.splitfirstsyllable(txt)

 if orgTxt in self.class_1_stems:

 newState = "End_State"

 #print(orgTxt + " Class 1 stem")

 self.structure.append(orgTxt + " [Class 1 Noun stem]")

 elif orgTxt in self.class_1a_stems:

 newState = "End_State"

 #print(orgTxt + " Class 1a stem")

 self.structure.append(orgTxt + " [Class 1a Noun stem]")

 elif orgTxt in self.class_3_stems:

 newState = "End_State"

 #print(orgTxt + " Class 3 stem")

 self.structure.append(orgTxt + " [Class 3 Noun stem]")

 elif orgTxt in self.class_5_stems:

 newState = "End_State"

 #print(orgTxt + " Class 5 stem")

 self.structure.append(orgTxt + " [Class 5 Noun stem]")

 elif orgTxt in self.class_7_stems:

 newState = "End_State"

 #print(orgTxt + " Class 7 stem")

 self.structure.append(orgTxt + " [Class 7 Noun stem]")

 elif orgTxt in self.class_9_stems:

 newState = "End_State"

 #print(orgTxt + " Class 9 stem")

 self.structure.append(orgTxt + " [Class 9 Noun stem]")

 elif orgTxt in self.class_11_stems:

 newState = "End_State"

 #print(orgTxt + " Class 11 stem")

 self.structure.append(orgTxt + " [Class 11 Noun stem]")

151 | P a g e

 elif orgTxt in self.class_14_stems:

 newState = "End_State"

 #print(orgTxt + " Class 14 stem")

 self.structure.append(orgTxt + " [Class 14 Noun stem]")

 elif firstsyllable == "mu": #noun_prefixes:

 newState = "Class_1_or_3_state"

 #print(firstsyllable + " [Class 1 or 3]")

 self.structure.append(firstsyllable + " [Class 1 or 3 Noun_prefix]")

 elif firstsyllable == "va":

 nxtsyllable, rst = self.splitfirstsyllable(txt)

 if nxtsyllable == "na":

 newState = "Class_2b_state"

 #print(firstsyllable + nxtsyllable + " [Class 2b]")

 self.structure.append(firstsyllable + " [Class 2b Noun_prefix]")

 txt = rst

 else:

 newState = "Class_2_state"

 #print(firstsyllable + " [Class 2]")

 self.structure.append(firstsyllable + " [Class 2 Noun_prefix]")

 elif firstsyllable == "ma":

 nxtsyllable, rst = self.splitfirstsyllable(txt)

 if nxtsyllable == "dzi":

 newState = "Class_6_or_10_state"

 #print(firstsyllable + nxtsyllable + " [Class 6]")

 self.structure.append(firstsyllable + " [Class 6 Noun_prefix]")

 txt = rst

 else:

 newState = "Class_6_or_10_state"

 #print(firstsyllable + " [Class 6 or 10]")

 self.structure.append(firstsyllable + " [Class 6 Noun_prefix]")

 elif firstsyllable == "mi":

 newState = "Class_4_state"

 #print(firstsyllable + " [Class 4]")

 self.structure.append(firstsyllable + " [Class 4 Noun_prefix]")

 elif firstsyllable in ("chi","cha"):

 newState = "Class_7_state"

 #print(firstsyllable + " [Class 7]")

 self.structure.append(firstsyllable + " [Class 7 Noun_prefix]")

 elif firstsyllable in ("zvi","zva","zvu"):

 newState = "Class_7_state"

 #print(firstsyllable + " [Class 8 prefix]")

 self.structure.append(firstsyllable + " [Class 8 Noun_prefix]")

 elif firstsyllable in ("ru","rwa","gwa", "rwe", "gwe", "gu"):

 newState = "Class_11_state"

 #print(firstsyllable + " [Class 11 prefix]")

 self.structure.append(firstsyllable + " [Class 11 Noun_prefix]")

 elif firstsyllable == "ka":

 newState = "Class_12_state"

 #print(firstsyllable + " [Class 12 prefix]")

 self.structure.append(firstsyllable + " [Class 12 Noun_prefix]")

 elif firstsyllable == "tu":

 newState = "Class_12_state"

 #print(firstsyllable + " [Class 12 prefix]")

152 | P a g e

 self.structure.append(firstsyllable + " [Class 12 Noun_prefix]")

 elif firstsyllable in ("u","hu"):

 newState = "Class_14_state"

 #print(firstsyllable + " [Class 14 prefix]")

 self.structure.append(firstsyllable + " [Class 14 Noun_prefix]")

 elif firstsyllable in ("ku"):

 newState = "Class_15_or_17_state"

 #print(firstsyllable + " [Class 15 or 17 prefix]")

 self.structure.append(firstsyllable + " [Class 15 or 17 Noun_prefix]")

 elif firstsyllable in ("pa"):

 newState = "Class_16_state"

 #print(firstsyllable + " [Class 16 prefix]")

 self.structure.append(firstsyllable + " [Class 16 Noun_prefix]")

 elif firstsyllable in ("svi"):

 newState = "Class_19_state"

 #print(firstsyllable + " [Class 19 prefix]")

 self.structure.append(firstsyllable + " [Class 19 Noun_prefix]")

 elif firstsyllable in ("zi"):

 newState = "Class_21_state"

 #print(firstsyllable + " [Class 21 prefix]")

 self.structure.append(firstsyllable + " [Class 21 Noun_prefix]")

 elif firstsyllable in noun_prefixes:

 newState = "noun_prefixes_state"

 ##print(firstsyllable + " [Negation or Mood]")

 self.structure.append(firstsyllable + " [Noun_prefix]")

 else:

 newState = "error_state"

 self.structure.append(txt + " [Unknown Noun]")

 return(newState, txt)

 def class_21_transitions(self,txt):

 orgTxt = txt

 firstsyllable, txt = self.splitfirstsyllable(txt)

 if (orgTxt in self.class_21_stems) or (orgTxt in self.class_1_stems):

 newState = "End_State"

 #print(orgTxt + " Class 21 stem")

 self.structure.append(orgTxt + " [Class 21 Noun stem]")

 elif firstsyllable == "mu": #noun_prefixes:

 newState = "Class_1_or_3_state"

 #print(firstsyllable + " [Class 1 or 3]")

 self.structure.append(firstsyllable + " [Class 1 or 3 Noun_prefix]")

 elif firstsyllable == "va":

 nxtsyllable, rst = self.splitfirstsyllable(txt)

 if nxtsyllable == "na":

 newState = "Class_2b_state"

 #print(firstsyllable + nxtsyllable + " [Class 2b]")

 self.structure.append(firstsyllable + " [Class 2b Noun_prefix]")

153 | P a g e

 txt = rst

 else:

 newState = "Class_2_state"

 #print(firstsyllable + " [Class 2]")

 self.structure.append(firstsyllable + " [Class 2 Noun_prefix]")

 elif firstsyllable == "ma":

 nxtsyllable, rst = self.splitfirstsyllable(txt)

 if nxtsyllable == "dzi":

 newState = "Class_6_or_10_state"

 #print(firstsyllable + nxtsyllable + " [Class 6]")

 self.structure.append(firstsyllable + " [Class 6 Noun_prefix]")

 txt = rst

 else:

 newState = "Class_6_or_10_state"

 #print(firstsyllable + " [Class 6 or 10]")

 self.structure.append(firstsyllable + " [Class 6 Noun_prefix]")

 elif firstsyllable == "mi":

 newState = "Class_4_state"

 #print(firstsyllable + " [Class 4]")

 self.structure.append(firstsyllable + " [Class 4 Noun_prefix]")

 elif firstsyllable in ("chi","cha"):

 newState = "Class_7_state"

 #print(firstsyllable + " [Class 7]")

 self.structure.append(firstsyllable + " [Class 7 Noun_prefix]")

 elif firstsyllable in ("zvi","zva","zvu"):

 newState = "Class_7_state"

 #print(firstsyllable + " [Class 8 prefix]")

 self.structure.append(firstsyllable + " [Class 8 Noun_prefix]")

 elif firstsyllable in ("ru","rwa","gwa", "rwe", "gwe", "gu"):

 newState = "Class_11_state"

 #print(firstsyllable + " [Class 11 prefix]")

 self.structure.append(firstsyllable + " [Class 11 Noun_prefix]")

 elif firstsyllable == "ka":

 newState = "Class_12_state"

 #print(firstsyllable + " [Class 12 prefix]")

 self.structure.append(firstsyllable + " [Class 12 Noun_prefix]")

 elif firstsyllable == "tu":

 newState = "Class_12_state"

 #print(firstsyllable + " [Class 12 prefix]")

 self.structure.append(firstsyllable + " [Class 12 Noun_prefix]")

 elif firstsyllable in ("u","hu"):

 newState = "Class_14_state"

 #print(firstsyllable + " [Class 14 prefix]")

 self.structure.append(firstsyllable + " [Class 14 Noun_prefix]")

 elif firstsyllable in ("ku"):

 newState = "Class_15_or_17_state"

 #print(firstsyllable + " [Class 15 or 17 prefix]")

 self.structure.append(firstsyllable + " [Class 15 or 17 Noun_prefix]")

 elif firstsyllable in ("pa"):

 newState = "Class_16_state"

 #print(firstsyllable + " [Class 16 prefix]")

 self.structure.append(firstsyllable + " [Class 16 Noun_prefix]")

 elif firstsyllable in ("svi"):

154 | P a g e

 newState = "Class_19_state"

 #print(firstsyllable + " [Class 19 prefix]")

 self.structure.append(firstsyllable + " [Class 19 Noun_prefix]")

 elif firstsyllable in ("zi"):

 newState = "Class_21_state"

 #print(firstsyllable + " [Class 21 prefix]")

 self.structure.append(firstsyllable + " [Class 21 Noun_prefix]")

 elif firstsyllable in noun_prefixes:

 newState = "noun_prefixes_state"

 ##print(firstsyllable + " [Negation or Mood]")

 self.structure.append(firstsyllable + " [Noun_prefix]")

 else:

 newState = "error_state"

 self.structure.append(txt + " [Unknown Noun]")

 return(newState, txt)

 def genitive_transitions(self,txt):

 orgTxt = txt

 firstsyllable, txt = self.splitfirstsyllable(txt)

 # #print(firstsyllable+ " [First Syllable]")

 if firstsyllable == "mu": #noun_prefixes:

 newState = "Class_1_or_3_state"

 #print(firstsyllable + " [Class 1 or 3]")

 self.structure.append(firstsyllable + " [Class 1 or 3 Noun_prefix]")

 elif firstsyllable == "va":

 nxtsyllable, rst = self.splitfirstsyllable(txt)

 if nxtsyllable == "na":

 newState = "Class_2b_state"

 #print(firstsyllable + nxtsyllable + " [Class 2b]")

 self.structure.append(firstsyllable + " [Class 2b Noun_prefix]")

 txt = rst

 else:

 newState = "Class_2_state"

 #print(firstsyllable + " [Class 2]")

 self.structure.append(firstsyllable + " [Class 2 Noun_prefix]")

 elif firstsyllable == "ma":

 nxtsyllable, rst = self.splitfirstsyllable(txt)

 if nxtsyllable == "dzi":

 newState = "Class_6_or_10_state"

 #print(firstsyllable + nxtsyllable + " [Class 6]")

 self.structure.append(firstsyllable + " [Class 6 Noun_prefix]")

 txt = rst

 else:

 newState = "Class_6_or_10_state"

 #print(firstsyllable + " [Class 6 or 10]")

 self.structure.append(firstsyllable + " [Class 6 Noun_prefix]")

 elif firstsyllable == "mi":

 newState = "Class_4_state"

 #print(firstsyllable + " [Class 4]")

 self.structure.append(firstsyllable + " [Class 4 Noun_prefix]")

 elif firstsyllable in ("chi","cha"):

 newState = "Class_7_state"

 #print(firstsyllable + " [Class 7]")

 self.structure.append(firstsyllable + " [Class 7 Noun_prefix]")

155 | P a g e

 elif firstsyllable in ("zvi","zva","zvu"):

 newState = "Class_7_state"

 #print(firstsyllable + " [Class 8 prefix]")

 self.structure.append(firstsyllable + " [Class 8 Noun_prefix]")

 elif firstsyllable in ("ru","rwa","gwa", "rwe", "gwe", "gu"):

 newState = "Class_11_state"

 #print(firstsyllable + " [Class 11 prefix]")

 self.structure.append(firstsyllable + " [Class 11 Noun_prefix]")

 elif firstsyllable == "ka":

 newState = "Class_12_state"

 #print(firstsyllable + " [Class 12 prefix]")

 self.structure.append(firstsyllable + " [Class 12 Noun_prefix]")

 elif firstsyllable == "tu":

 newState = "Class_12_state"

 #print(firstsyllable + " [Class 12 prefix]")

 self.structure.append(firstsyllable + " [Class 12 Noun_prefix]")

 elif firstsyllable in ("u","hu"):

 newState = "Class_14_state"

 #print(firstsyllable + " [Class 14 prefix]")

 self.structure.append(firstsyllable + " [Class 14 Noun_prefix]")

 elif firstsyllable in ("ku"):

 newState = "Class_15_or_17_state"

 #print(firstsyllable + " [Class 15 or 17 prefix]")

 self.structure.append(firstsyllable + " [Class 15 or 17 Noun_prefix]")

 elif firstsyllable in ("pa"):

 newState = "Class_16_state"

 #print(firstsyllable + " [Class 16 prefix]")

 self.structure.append(firstsyllable + " [Class 16 Noun_prefix]")

 elif firstsyllable in ("svi"):

 newState = "Class_19_state"

 #print(firstsyllable + " [Class 19 prefix]")

 self.structure.append(firstsyllable + " [Class 19 Noun_prefix]")

 elif firstsyllable in ("zi"):

 newState = "Class_21_state"

 #print(firstsyllable + " [Class 21 prefix]")

 self.structure.append(firstsyllable + " [Class 21 Noun_prefix]")

 elif firstsyllable in noun_prefixes:

 newState = "noun_prefixes_state"

 ##print(firstsyllable + " [Negation or Mood]")

 self.structure.append(firstsyllable + " [Noun_prefix]")

 elif firstsyllable in genitive_prefixes:

 newState = "genitive_prefixes_state" #Otherwise write Genitive Transitions method

 #print(firstsyllable + " [Genitive Prefix]")

 self.structure.append(firstsyllable + " [Genitive_prefix]")

 else:

 txt = orgTxt

 newState = "noun_stem_state"

 self.structure.append("[]" + " Noun Prefix]")

 return(newState, txt)

156 | P a g e

 def noun_stem_transitions(self,txt):

 if txt in self.class_1_nouns:

 newState = "End_State"

 self.structure.append(txt + " [Class 1 Noun stem]")

 elif txt in self.class_1a_nouns:

 newState = "End_State"

 self.structure.append(txt + " [Class 1 Noun stem]")

 elif txt in self.class_5_stems:

 newState = "End_State"

 self.structure.append(txt + " [Class 5 Noun stem]")

 elif txt in self.class_9_stems:

 newState = "End_State"

 self.structure.append(txt + " [Class 9 Noun stem]")

 else:

 newState = "error_state"

 self.structure.append(txt + " [Unknown Noun]")

 return(newState, txt)

 def end_state_transitions(self,package):

 done =1

 #print("Noun Accepted with root ", package[0], " and extensions ",package[1], "and final vowel

",package[2])

 return done

 def spellCheck(self,txt):

 retValue = self.run(txt)

 if retValue:

 retValue = True

 else:

 retValue = False

 return retValue

 def get_class_data():

 nounClasses = pkl.load(open("e:/data/programming/python/Shona NLP/Language

Modelling/Dictionaries/nounClasses.p","rb"))

 class_1_nouns,class_1a_nouns, class_1b_nouns, class_2_nouns, class_2a_nouns,

class_2b_nouns, class_3_nouns, class_4_nouns, class_5_nouns, class_6_nouns, class_7_nouns,

class_8_nouns, class_9_nouns, class_10_nouns, class_11_nouns, class_12_nouns, class_13_nouns,

class_14_nouns, class_15_nouns, class_16_nouns, class_17_nouns, class_17a_nouns,

class_18_nouns, class_19_nouns, class_20_nouns, class_21_nouns = nounClasses

 return nounClasses

157 | P a g e

Listing 4 - Finite State Automata – using Bernd Klein’s code

"""

Created on Sun Jul 4 19:30:50 2021

@author: Farayi

"""

import tkinter as tk

from tkinter import messagebox

import pygubu

import sys

import Trie as t3

import string

import ShonaVerb as sv

import ShonaNoun as sn

import ctypes

v=sys.version

if "2.7" in v:

 import Tkinter as tk

 from Tkinter import *

elif "3." in v:

 import tkinter as tk

 from tkinter import *

 from tkinter.filedialog import FileDialog

from tkinter.filedialog import askopenfilename, asksaveasfilename

def get_char_3grams(inword):

 char_3grams = [inword[i:i+3].lower() for i in range(len(inword)-1)]

 return char_3grams

def find_error(test_word, ngram_dict):

 error_list = [w for w in get_char_3grams(test_word) if w not in ngram_dict]

 return error_list

def spell_check(test_word, ngram_dict):

 result = (find_error(test_word,ngram_dict) == [])

 return result

def openDictionary():

 with open('dictionaries/Shona_words.txt') as f: #'DGR_vocab.txt') as f: # mazwi_eduramazwi

 words_dict = f.read().splitlines()

 return words_dict

def shonaTokeniser(mazwi):

158 | P a g e

 ch=""

 wrd = ""

 shonaTokens = []

 for i in range(len(mazwi)):

 ch=mazwi[i]

 if (ch.isalpha()) or (ch.isnumeric()) or (ch == "'") or (ch == "’"):

 wrd=wrd+ch

 elif ch != " ":

 if wrd != "":

 shonaTokens.append(wrd)

 if ch in string.punctuation:

 if ch in ["'", "’"]:

 wrd = wrd+ ch

 else:

 shonaTokens.append(ch)

 wrd=""

 else:

 if wrd != "":

 shonaTokens.append(wrd)

 wrd = ""

 return shonaTokens

def open_file():

 """Open a file for editing."""

 filepath = askopenfilename(

 filetypes=[("Text Files", "*.txt"), ("All Files", "*.*")]

)

 if not filepath:

 return

 txt_edit.delete(1.0, tk.END)

 with open(filepath, "r", encoding='utf-8', errors="ignore") as input_file:

 text = input_file.read()

 txt_edit.insert(tk.END, text)

 root.title(f"Text Editor Application - {filepath}")

def splitfirstsyllable(txt):

 firstSyllable=""

 restOftext=""

 vowels={"a","e","i","o","u"}

 if len(txt) ==1 :

 firstSyllable=txt

 else:

 if len(txt) > 0:

 startChar=txt[0]

 #print("startChar is : " +startChar)

 if startChar in vowels:

 firstSyllable = startChar

 restOftext = txt[1:]

 else:

 i=1

 nextChar=txt[i]

 firstSyllable=startChar

 while (nextChar not in vowels) and ((i+1) < len(txt)):

 firstSyllable= firstSyllable+nextChar

159 | P a g e

 i+=1

 nextChar=txt[i]

 if (i+1) != len(txt):

 firstSyllable=firstSyllable+nextChar

 restOftext = txt[len(firstSyllable):]

 return firstSyllable, restOftext

def saveas():

 global txt_edit

 t = txt_edit.get("1.0","end-1c")

 savelocation=asksaveasfilename()

 file1=open(savelocation,"w+")

 file1.write(t)

 file1.close()

 root.title(f"Text Editor Application - {savelocation}")

def syllabify(txt):

 syllables = []

 firstsyllable, restoftxt = splitfirstsyllable(txt)

 while len(restoftxt) > 0:

 syllables.append(firstsyllable)

 firstsyllable, restoftxt = splitfirstsyllable(restoftxt)

 #print(firstsyllable)

 if len(firstsyllable) > 0:

 syllables.append(firstsyllable + txt[-1:])

 return syllables

def logical_xor(str1, str2):

 return bool(str1) ^ bool(str2)

def hasValidSyllables(txt):

 itdoes = True

 chktxt = txt.lower()

 syllables = syllabify(chktxt)

 for syllable in syllables:

 if syllable[:-1] in sv.validSyllables:

 #flash('{} is a valid syllable.'.format(syllable))

 itdoes= itdoes

 elif syllable in sv.vowels:

 #flash('{} is a valid syllable.'.format(syllable))

 itdoes= itdoes

 else:

 #flash('{} is not a valid syllable'.format(syllable))

 itdoes= False

 #flash('{} has been checked and the statement of whether it has valid syllables has been found to

be {}'.format(txt,itdoes))

 return itdoes

def hasValidSubwords(txt):

 word_list = sv.openDictionary()

 found = False

160 | P a g e

 restoftxt = txt

 while (not found) and (len(restoftxt) > 2):

 firstsyllable, restoftxt = splitfirstsyllable(restoftxt)

 #flash('Split into <{}> and <{}>.'.format(firstsyllable, restoftxt))

 subword = restoftxt

 if subword in word_list:

 #print('{} is a valid subword'.format(subword))

 found = True

 else:

 found=False

 #flash('{} has been checked and the statement of whether it has valid subwords has been found to

be {}'.format(txt,found))

 return found

def hasValidStem(txt):

 #words_list = sv.openDictionary()

 stem_list = sv.openStemDictionary()

 found = False

 restoftxt = txt

 while (not found) and (len(restoftxt) > 2):

 firstsyllable, restoftxt = splitfirstsyllable(restoftxt)

 #flash('Split into <{}> and <{}>.'.format(firstsyllable, restoftxt))

 stem = restoftxt[:-1]

 stem = "-" + stem + "a"

 if stem in stem_list:

 #flash('{} is a valid stem'.format(stem))

 found = True

 else:

 found=False

 #flash('{} has been checked and the statement of whether it has valid stems has been found to be

{}'.format(txt,found))

 return found

def peretera(txt, words_list):

 shv = sv.ShonaVerb()

 #words_list = shv.openDictionary()

 if txt.isnumeric() or (txt in string.punctuation):

 found = True

 else:

 if txt in words_list:

 print('Word {} found in our our dictionary'.format(txt))

 found = True

 else:

 found = shv.spellCheck(txt)

 if found:

 print('The word {} is not in the dictionary but was found via verb morphological

analysis.'.format(txt))

 else:

 found = shv.spellCheck(txt)

 if found:

 print('The word {} is not in the dictionary but was found via verb morphological

analysis.'.format(txt))

161 | P a g e

 if not found:

 shn = sn.ShonaNoun()

 found = shn.spellCheck(txt)

 if found:

 print('The word {} is not in the dictionary but was found via noun morphological

analysis.'.format(txt))

 else:

 print('The word {} is not in the dictionary and could not be re-created via both verb and

noun morphological analysis.'.format(txt))

 #if (hasValidStem(txt)) : #or hasValidSubwords(txt)) : #or hasValidSyllables(txt):

 # found = True

 #else:

 # found = False

 #if not found:

 # print('The word {} is not a known word.'.format(txt))

 return_val = found

 return return_val

def spellcheck():

 global txt_edit

 t = txt_edit.get("1.0",'end-1c')

 contents = shonaTokeniser(t)

 for w in contents:

 is_found = trie_dictionary.query(w.lower())

 if not is_found:

 if not peretera(w.lower(), wd):

 txt_edit.tag_configure("red", foreground="#ff0000")

 txt_edit.highlight_pattern(w, "red")

 #print(w + " is an invalid word.")

 #TODO: Implement Suggestion generator

 MessageBox = ctypes.windll.user32.MessageBoxW

 MessageBox(None, 'Done', 'Spell Checking Progress', 0)

def open_file():

 """Open a file for editing."""

 filepath = askopenfilename(

 filetypes=[("Text Files", "*.txt"), ("All Files", "*.*")]

)

 if not filepath:

 return

 txt_edit = self.builder.get_variable('OriginalText')

 txt_edit.delete(1.0, tk.END)

 with open(filepath, "r") as input_file:

 text = input_file.read()

 txt_edit.insert(tk.END, text)

 root.title(f"Text Editor Application - {filepath}")

class CompareSpell:

 def __init__(self):

 #1: Create a builder

162 | P a g e

 self.builder = builder = pygubu.Builder()

 #2: Load an ui file

 builder.add_from_file('comparespell.ui')

 #3: Create the mainwindow

 self.mainwindow = builder.get_object('mainwindow')

 builder.connect_callbacks(self)

 self.open_button_object = builder.get_object('Openbtn', self.mainwindow)

 def on_button1_clicked(self):

 """Open a file for editing."""

 filepath = askopenfilename(

 filetypes=[("Text Files", "*.txt"), ("All Files", "*.*")]

)

 if not filepath:

 return

 txt_edit = self.builder.get_object('OriginalText')

 maOutput = self.builder.get_object('MABasedSpellChecker')

 nGramOutput = self.builder.get_object('NGramBased')

 outmsg = self.builder.get_object('ma_msg')

 nGramOutmsg = self.builder.get_object('n_gram_msg')

 unKnownCount = self.builder.get_object('Unknown_count')

 #messagebox.showinfo('Message','SUcces with text_edit')

 txt_edit.delete(1.0, tk.END)

 with open(filepath, "r") as input_file:

 text = input_file.read()

 txt_edit.delete(1.0, tk.END)

 txt_edit.insert(tk.END, text)

 maOutput.delete(1.0, tk.END)

 nGramOutput.delete(1.0, tk.END)

 outmsg.config(text="")

 nGramOutmsg.config(text = "")

 unKnownCount.config(text = "")

 def on_button2_clicked(self):

 #messagebox.showinfo('Message', 'You clicked The Spell Check Button')

 txt_edit = self.builder.get_object('OriginalText')

 outmsg = self.builder.get_object('ma_msg')

 nGramOutmsg = self.builder.get_object('n_gram_msg')

 maOutput = self.builder.get_object('MABasedSpellChecker')

 nGramOutput = self.builder.get_object('NGramBased')

 #maOutput.delete(1.0, tk.END)

163 | P a g e

 #nGramOutput.delete(1.0, tk.END)

 unKnownCount = self.builder.get_object('Unknown_count')

 t = txt_edit.get("1.0",'end-1c')

 #maOutput.insert(tk.END, t)

 contents = shonaTokeniser(t)

 num_found = 0

 ngram_found = 0

 not_in_dict = 0

 OovWords = []

 for w in contents:

 is_found = trie_dictionary.query(w.lower())

 if not is_found:

 OovWords.append(w.lower())

 not_in_dict += 1

 if not peretera(w.lower(),wd):

 txt_edit.tag_configure("red", foreground="#ff0000")

 #txt_edit.highlight_pattern(w, "red")

 #maOutput.tag_configure("red", foreground="#ff0000")

 maOutput.insert(tk.END, w)

 maOutput.insert(tk.END, "\r\n")

 num_found +=1

 #maOutput.highlight_pattern(w, "red")

 #print(w + " is an invalid word.")

 #TODO: Implement Suggestion generator

 if not spell_check(w.lower(), counts):

 nGramOutput.insert(tk.END, w)

 nGramOutput.insert(tk.END, "\r\n")

 ngram_found +=1

 UniqueOoV = len(set(OovWords))

 MessageBox = ctypes.windll.user32.MessageBoxW

 MessageBox(None, 'Done', 'Spell Checking Progress', 0)

 msg_txt = "There are " + str(num_found) + " unknown words that were marked as incorrect by

the Morphological Analyser based spell checker."

 nGram_txt = str(ngram_found) +" incorrect words found using character n-gram spell checker."

 OoVmsg = str(UniqueOoV) + " unique Out of Vocabulary words not found a total of " +

str(not_in_dict) + " times in text."

 outmsg.config(text=msg_txt)

 nGramOutmsg.config(text = nGram_txt)

 unKnownCount.config(text = OoVmsg)

 def run(self):

 self.mainwindow.mainloop()

164 | P a g e

if __name__ == '__main__':

 wd = openDictionary()

 trie_dictionary=t3.Trie()

 for w in wd:

 trie_dictionary.insert(w.lower())

 corpora = open("dictionaries/Shona_words.txt","r") #"mazwi_eduramazwi_akapepetwa.txt", "r") #,

encoding="utf8")

 corpora_text = corpora.read().splitlines()

 #char_3grams = [corpora_text[i:i+3] for i in range(len(corpora_text)-1)]

 char_3grams = [w[i:i+3].lower() for w in corpora_text for i in range(len(w)-1)]

 #d = {x:char_3grams.count(x) for x in char_3grams}

 counts = dict()

 for i in char_3grams:

 counts[i] = counts.get(i, 0) + 1

 app = CompareSpell()

 app.run()

165 | P a g e

Appendix 2 – Results of Mini Experiment on limitations of Google

Translate

All screenshots retrieved on 5 April 2020 between 12:41 and 13:03 SAST

Figure 0-1- Google Translate's translation of the Shona verb “famba” (walk) to English

Figure 0-2- Google Translate's translation of the Shona verb "ona"(see) to English

166 | P a g e

Figure 0-3- Google Translate's translation of the Shona verb "anofamba" (s/he walks) to English

Figure 0-4- Google Translate's translation of the Shona verb "anoona"(he sees) to English

Figure 0-5 - Google Translate's translation of the Shona verb "haafambe" (s/he does not walk) to English

Figure 0-6 - Google Translate's translation of the Shona verb "haaone" (s/he does not see) into English

167 | P a g e

Appendix 3 – Sample Data – CTLM versus MAShoKO based spell checker results

Shona 100k Words Correctness
OOV
Status

N-Gram Word
Flagged Correct

Word Actually
Correct

Mashoko Word
Flagged Correct

Ndapedza Valid - Shona word No Yes Yes Yes

ndokukoromoka Valid - Shona word Yes Yes Yes Yes

pasingapihwe Valid - Shona word Yes Yes Yes Yes

dzakapwa Valid - Shona word Yes Yes Yes Yes

VECHIDIKI Valid - Shona word No Yes Yes Yes

naVincent Valid - Shona plus Borrowed Word Yes No Yes No

Marwei Valid - Shona word No Yes Yes Yes

yemuAfrica Valid - Shona plus Borrowed Word Yes Yes Yes No

Kuzvibata Valid - Shona word No Yes Yes Yes

dzekunowanikwa Valid - Shona word Yes Yes Yes Yes

nyararai Valid - Shona word Yes Yes Yes Yes

Emilia Valid - Borrowed Word Yes No Yes No

yeNyamatikiti Valid - Shona word Yes Yes Yes Yes

eNASH Valid - Shona plus Borrowed Word Yes No Yes Yes

inombonyimwe Valid - Shona word Yes Yes Yes Yes

mumagwaro Valid - Shona word Yes Yes Yes Yes

kutakishopu Valid - Shona word Yes Yes Yes Yes

mhosho Valid - Shona word No Yes Yes Yes

ndichiriwana Valid - Shona word Yes Yes Yes Yes

tinozvinzwira Valid - Shona word Yes Yes Yes Yes

yakaisa Valid - Shona word Yes Yes Yes Yes

resimbi Valid - Shona word No Yes Yes Yes

tozopa Valid - Shona word Yes Yes Yes Yes

chakaora Valid - Shona word No Yes Yes Yes

168 | P a g e

Shona 100k Words Correctness
OOV
Status

N-Gram Word
Flagged Correct

Word Actually
Correct

Mashoko Word
Flagged Correct

Enifa Valid - Shona word Yes Yes Yes Yes

rwunoyerera Valid - Shona word Yes Yes Yes Yes

yandataura Valid - Shona word Yes Yes Yes Yes

dzenyaya Valid - Shona word Yes Yes Yes Yes

vachibvunzana Valid - Shona word No Yes Yes Yes

veChirovarova Valid - Shona word Yes Yes Yes Yes

parege Valid - Shona word No Yes Yes Yes

tichisanganisira Valid - Shona word Yes Yes Yes Yes

zvaimuda Valid - Shona word Yes Yes Yes Yes

uchizoguma Valid - Shona word Yes Yes Yes Yes

Soocer Valid - Borrowed Word Yes No Yes No

nekeratin Valid - Shona word Yes Yes Yes Yes

pevanonzi Valid - Shona word Yes Yes Yes Yes

chekurembera Valid - Shona word Yes Yes Yes Yes

Hazvisati Valid - Shona word Yes Yes Yes Yes

full Valid - Borrowed Word Yes No Yes No

zvavakazviitira Valid - Shona word Yes Yes Yes Yes

pevandinoshanda Valid - Shona word Yes Yes Yes Yes

vaimbonamata Valid - Shona word Yes Yes Yes Yes

Idzowo Valid - Shona word Yes Yes Yes Yes

uchishaika Valid - Shona word Yes Yes Yes Yes

Goko Valid - Shona word No Yes Yes Yes

zidza Valid - Shona word Yes Yes Yes Yes

vanowanzobatwa Valid - Shona word Yes Yes Yes Yes

achahwinhwa Valid - Shona word Yes Yes Yes Yes

point Valid - Borrowed Word Yes No Yes Yes

pachiito Valid - Shona word No Yes Yes Yes

169 | P a g e

Shona 100k Words Correctness
OOV
Status

N-Gram Word
Flagged Correct

Word Actually
Correct

Mashoko Word
Flagged Correct

nevanhukadzi Valid - Shona word No Yes Yes Yes

pakamboita Valid - Shona word Yes Yes Yes Yes

Mukoki Valid - Shona word Yes Yes Yes Yes

panomuka Valid - Shona word Yes Yes Yes Yes

mudota Valid - Shona word No Yes Yes Yes

achitsotsa Valid - Shona word Yes Yes Yes Yes

naSaki Valid - Shona word Yes Yes Yes Yes

ikangopinda Valid - Shona word Yes Yes Yes Yes

mumivhirinyimo Valid - Shona word Yes Yes Yes Yes

cheCelebration Valid - Shona plus Borrowed Word Yes No Yes No

eVictoria Valid - Shona plus Borrowed Word No Yes Yes No

kanoratidza Valid - Shona word No Yes Yes Yes

Achatapurira Valid - Shona word Yes Yes Yes Yes

zvamanzi Valid - Shona word Yes Yes Yes Yes

rezviuru Valid - Shona word Yes Yes Yes Yes

dzekunyora Valid - Shona word Yes Yes Yes Yes

regunera Valid - Shona word Yes Yes Yes Yes

kutokutadzisa Valid - Shona word Yes Yes Yes Yes

ndakaidya Valid - Shona word Yes Yes Yes Yes

naMadzibaba Valid - Shona word Yes Yes Yes Yes

neBesiktas Valid - Shona plus Borrowed Word Yes No Yes No

zvakatarwa Valid - Shona word Yes Yes Yes Yes

dzokubudirira Valid - Shona word Yes Yes Yes Yes

Tavapa Valid - Shona word Yes Yes Yes Yes

ngarwuvewo Valid - Shona word Yes No Yes Yes

vakageza Valid - Shona word Yes Yes Yes Yes

adoma Valid - Shona word Yes Yes Yes Yes

170 | P a g e

Shona 100k Words Correctness
OOV
Status

N-Gram Word
Flagged Correct

Word Actually
Correct

Mashoko Word
Flagged Correct

chakurumidza Valid - Shona word No Yes Yes Yes

vatinoti Valid - Shona word Yes Yes Yes Yes

nekusangana Valid - Shona word No Yes Yes Yes

rokuberekwa Valid - Shona word Yes Yes Yes Yes

vavhiringike Valid - Shona word Yes Yes Yes Yes

Parinobuda Valid - Shona word Yes Yes Yes Yes

akangopupa Valid - Shona word Yes Yes Yes Yes

Mitengo Valid - Shona word No Yes Yes Yes

kurwiwa Valid - Shona word No Yes Yes Yes

muteereri Valid - Shona word No Yes Yes Yes

Muroti Valid - Shona word No Yes Yes Yes

description Valid - Borrowed Word Yes No Yes No

Vanin’ina Valid - Shona word No Yes Yes Yes

wekwaSabhuku Valid - Shona word Yes Yes Yes Yes

yaaiziva Valid - Shona word Yes Yes Yes Yes

yekuatenga Valid - Shona word Yes Yes Yes Yes

takanganwa Valid - Shona word Yes Yes Yes Yes

vakaichengeta Valid - Shona word Yes Yes Yes Yes

duster Valid - Borrowed Word Yes No Yes No

vakamboungana Valid - Shona word Yes Yes Yes Yes

nekuongorora Valid - Shona word Yes Yes Yes Yes

isasangane Valid - Shona word Yes Yes Yes Yes

rakataura Valid - Shona word Yes Yes Yes Yes

tikunde Valid - Shona word Yes Yes Yes Yes

azvitsvagira Valid - Shona word Yes Yes Yes Yes

platinum Valid - Borrowed Word Yes No Yes No

pandakarohwa Valid - Shona word Yes Yes Yes Yes

171 | P a g e

Shona 100k Words Correctness
OOV
Status

N-Gram Word
Flagged Correct

Word Actually
Correct

Mashoko Word
Flagged Correct

vakadzinyina Valid - Shona word Yes Yes Yes Yes

Mercedes Valid - Borrowed Word Yes No Yes No

weSt Valid - Shona plus Borrowed Word Yes No Yes Yes

vachingokosora Valid - Shona word Yes Yes Yes Yes

achitozvirwarira Valid - Shona word Yes Yes Yes Yes

dzakaparwa Valid - Shona word Yes Yes Yes Yes

nechijana Valid - Shona word No Yes Yes Yes

dzingange Valid - Shona word Yes Yes Yes Yes

Manicaland Valid - Borrowed Word Yes No Yes No

haandiremekedzewo Valid - Shona word Yes Yes Yes Yes

muvadiki Valid - Shona word Yes Yes Yes Yes

ndakakundwa Valid - Shona word Yes Yes Yes Yes

vozopedzera Valid - Shona word Yes Yes Yes Yes

Leeroy Valid - Borrowed Word Yes No Yes No

vaitimba Valid - Shona word Yes Yes Yes Yes

ukachiona Valid - Shona word No Yes Yes Yes

dzinozvitsvakira Valid - Shona word Yes Yes Yes Yes

hwekugara Valid - Shona word Yes Yes Yes Yes

kuMambas Valid - Shona plus Borrowed Word Yes No Yes Yes

wamboshandisa Valid - Shona word Yes Yes Yes Yes

mumatumbu Valid - Shona word Yes Yes Yes Yes

kwamunositorera Valid - Shona word Yes Yes Yes Yes

yemaFungicides Valid - Shona plus Borrowed Word Yes No Yes No

sekuZinatha Valid - Shona plus Borrowed Word Yes No Yes No

pamukangesi Valid - Shona word Yes Yes Yes Yes

kutokwangwayawo Valid - Shona word Yes Yes Yes Yes

Start Valid - Borrowed Word Yes No Yes No

172 | P a g e

Shona 100k Words Correctness
OOV
Status

N-Gram Word
Flagged Correct

Word Actually
Correct

Mashoko Word
Flagged Correct

Machinda Valid - Shona word No Yes Yes Yes

Jael Valid - Borrowed Word Yes No Yes No

ritinakire Valid - Shona word Yes Yes Yes Yes

madzimai Valid - Shona word No Yes Yes Yes

vakadanana Valid - Shona word Yes Yes Yes Yes

paakazodzoka Valid - Shona word Yes Yes Yes Yes

Pavanonzi Valid - Shona word Yes Yes Yes Yes

Makara Valid - Shona word No Yes Yes Yes

kuriziva Valid - Shona word Yes Yes Yes Yes

chituko Valid - Shona word No Yes Yes Yes

kuida Valid - Shona word No Yes Yes Yes

haachisisina Valid - Shona word Yes Yes Yes Yes

kambotanga Valid - Shona word Yes Yes Yes Yes

kumadambarefu Valid - Shona word Yes Yes Yes Yes

maintained Valid - Borrowed Word Yes No Yes No

zvichavakwa Valid - Shona word Yes Yes Yes Yes

ndichinokecha Valid - Shona word Yes Yes Yes Yes

vakafema Valid - Shona word Yes Yes Yes Yes

aronge Valid - Shona word Yes Yes Yes Yes

nana Valid - Shona word No Yes Yes Yes

neEngineering Valid - Shona word Yes Yes Yes Yes

Kadora Valid - Shona word Yes Yes Yes Yes

chawandipa Valid - Shona word Yes Yes Yes Yes

akazobata Valid - Shona word Yes Yes Yes Yes

vanobvunzira Valid - Shona word Yes Yes Yes Yes

rakarukwa Valid - Shona word No Yes Yes Yes

Hunzi Valid - Shona word No Yes Yes Yes

173 | P a g e

Shona 100k Words Correctness
OOV
Status

N-Gram Word
Flagged Correct

Word Actually
Correct

Mashoko Word
Flagged Correct

nezvidza Valid - Shona word Yes Yes Yes Yes

ndakatarisira Valid - Shona word Yes Yes Yes Yes

thinking Valid - Borrowed Word Yes No Yes No

nekumweya Valid - Shona word Yes Yes Yes Yes

nepafafitera Valid - Shona word Yes Yes Yes Yes

kwaVaChivako Valid - Shona word Yes Yes Yes Yes

Kabasa Valid - Shona word No Yes Yes Yes

Nyaruvenda Valid - Shona word Yes Yes Yes Yes

kubatsirwa Valid - Shona word No Yes Yes Yes

wakapfunya Valid - Shona word No Yes Yes Yes

dzeboka Valid - Shona word Yes Yes Yes Yes

nomuimbi Valid - Shona word Yes Yes Yes Yes

ndinoyambira Valid - Shona word Yes Yes Yes Yes

Munomirira Valid - Shona word Yes Yes Yes Yes

anovamirira Valid - Shona word Yes Yes Yes Yes

yezviperengo Valid - Shona word No Yes Yes Yes

vaendeswe Valid - Shona word Yes Yes Yes Yes

kwakaradzikwawo Valid - Shona word Yes Yes Yes Yes

wevapi Valid - Shona word Yes Yes Yes Yes

rwakaserera Valid - Shona word Yes Yes Yes Yes

ndokubhinya Valid - Shona word Yes Yes Yes Yes

pesitendi Valid - Shona word Yes Yes Yes Yes

chinovigwa Valid - Shona word Yes Yes Yes Yes

apinda Valid - Shona word No Yes Yes Yes

Nhoro Valid - Shona word No Yes Yes Yes

pazvinotaura Valid - Shona word Yes Yes Yes Yes

ngatidzvare Valid - Shona word Yes Yes Yes Yes

174 | P a g e

Shona 100k Words Correctness
OOV
Status

N-Gram Word
Flagged Correct

Word Actually
Correct

Mashoko Word
Flagged Correct

vachimutenda Valid - Shona word Yes Yes Yes Yes

Mhishi Valid - Shona word No Yes Yes Yes

nemunin’na Valid - Shona word Yes No Yes No

anovawanisa Valid - Shona word Yes Yes Yes Yes

semutori Valid - Shona word Yes Yes Yes Yes

Acid Valid - Borrowed Word Yes No Yes No

Kuzvibatsira Valid - Shona word No Yes Yes Yes

takabhadharira Valid - Shona word Yes Yes Yes Yes

dzekutaridza Valid - Shona word Yes Yes Yes Yes

rwavanhu Valid - Shona word No Yes Yes Yes

nekatsamba Valid - Shona word Yes Yes Yes Yes

zvinoparara Valid - Shona word Yes Yes Yes Yes

Chikosoro Valid - Shona word No Yes Yes Yes

kutogadza Valid - Shona word Yes Yes Yes Yes

tigogamuchira Valid - Shona word Yes Yes Yes Yes

achingonyangarika Valid - Shona word Yes Yes Yes Yes

siyana Valid - Shona word No Yes Yes Yes

vacho Valid - Shona word No Yes Yes Yes

Paimhanyidzana Valid - Shona word Yes Yes Yes Yes

nenji Valid - Shona word No Yes Yes Yes

ndichitarisana Valid - Shona word Yes Yes Yes Yes

chemuNou Valid - Shona word Yes Yes Yes Yes

vemusha Valid - Shona word No Yes Yes Yes

vakandituka Valid - Shona word Yes Yes Yes Yes

ndirwoka Valid - Shona word Yes Yes Yes Yes

pamashandiro Valid - Shona word Yes Yes Yes Yes

minyoro Valid - Shona word Yes Yes Yes Yes

175 | P a g e

Shona 100k Words Correctness
OOV
Status

N-Gram Word
Flagged Correct

Word Actually
Correct

Mashoko Word
Flagged Correct

zvavaishandisa Valid - Shona word Yes Yes Yes Yes

dzipindire Valid - Shona word Yes Yes Yes Yes

anokahadzika Valid - Shona word Yes Yes Yes Yes

yekutamba Valid - Shona word Yes Yes Yes Yes

ndaratidzwa Valid - Shona word Yes Yes Yes Yes

yevhu Valid - Shona word No Yes Yes Yes

randisingazive Valid - Shona word Yes Yes Yes Yes

pandakasiyana Valid - Shona word Yes Yes Yes Yes

ndokuvaoneka Valid - Shona word Yes Yes Yes Yes

pakamira Valid - Shona word No Yes Yes Yes

vaizotsvaga Valid - Shona word Yes Yes Yes Yes

achibongomora Valid - Shona word Yes Yes Yes Yes

naMavis Valid - Shona word Yes Yes Yes Yes

rinokufarira Valid - Shona word Yes Yes Yes Yes

ungade Valid - Shona word Yes Yes Yes Yes

bhosvo Valid - Shona word No Yes Yes Yes

yavaeni Valid - Shona word Yes Yes Yes Yes

ndichinotanga Valid - Shona word Yes Yes Yes Yes

wekumushandira Valid - Shona word Yes Yes Yes Yes

azonorichekwa Valid - Shona word Yes Yes Yes Yes

Manson Valid - Borrowed Word Yes No Yes No

wechikwata Valid - Shona word No Yes Yes Yes

Shavanhowe Valid - Shona word Yes Yes Yes Yes

zvinonoka Valid - Shona word Yes Yes Yes Yes

tichitiburana Valid - Shona word Yes Yes Yes Yes

sesabhu Valid - Shona word Yes Yes Yes Yes

akaitiswa Valid - Shona word Yes Yes Yes Yes

176 | P a g e

Shona 100k Words Correctness
OOV
Status

N-Gram Word
Flagged Correct

Word Actually
Correct

Mashoko Word
Flagged Correct

paNembudziya Valid - Shona word Yes Yes Yes Yes

uchinyanyawo Valid - Shona word Yes Yes Yes Yes

ndozvavapo Valid - Shona word Yes Yes Yes Yes

zvinowaniswa Valid - Shona word Yes Yes Yes Yes

zviitogama Valid - Shona word Yes Yes Yes Yes

kutishora Valid - Shona word Yes Yes Yes Yes

kunzwisisana Valid - Shona word No Yes Yes Yes

dzoramba Valid - Shona word Yes Yes Yes Yes

semunhenga Valid - Shona word Yes Yes Yes Yes

hwe250 Valid - Shona plus Number Yes No Yes No

raVaJacob Valid - Shona plus Borrowed Word Yes No Yes No

rePremier Valid - Shona plus Borrowed Word Yes No Yes No

seIndependence Valid - Shona plus Borrowed Word Yes No Yes No

rekugashira Valid - Shona word Yes Yes Yes Yes

nembanje Valid - Shona word Yes Yes Yes Yes

apare Valid - Shona word Yes Yes Yes Yes

nditaurire Valid - Shona word Yes Yes Yes Yes

nemakavi Valid - Shona word No Yes Yes Yes

anotangira Valid - Shona word No Yes Yes Yes

wezvekutengeswa Valid - Shona word Yes Yes Yes Yes

zvinogaromunetsa Valid - Shona word Yes Yes Yes Yes

pakupfuhwira Valid - Shona word Yes Yes Yes Yes

hwekuzvipira Valid - Shona word Yes Yes Yes Yes

Yasiyana Valid - Shona word Yes Yes Yes Yes

musarudzo Valid - Shona word No Yes Yes Yes

nekwaBessem Valid - Shona plus Borrowed Word Yes No Yes No

ngaaregedze Valid - Shona word Yes Yes Yes Yes

177 | P a g e

Shona 100k Words Correctness
OOV
Status

N-Gram Word
Flagged Correct

Word Actually
Correct

Mashoko Word
Flagged Correct

ndichekwe Valid - Shona word Yes Yes Yes Yes

Hatingadi Valid - Shona word Yes Yes Yes Yes

chisarumwe Valid - Shona word Yes Yes Yes Yes

nefirimu Valid - Shona word Yes Yes Yes Yes

veGolden Valid - Shona plus Borrowed Word Yes No Yes No

usingafungiri Valid - Shona word No Yes Yes Yes

neronga Valid - Shona word Yes Yes Yes Yes

akanyatsonyorwa Valid - Shona word Yes Yes Yes Yes

wakanamira Valid - Shona word Yes Yes Yes Yes

nemadistricts Valid - Shona plus Borrowed Word Yes No Yes No

Ndakazosimuka Valid - Shona word Yes Yes Yes Yes

publicity Valid - Borrowed Word Yes No Yes No

mechimwe Valid - Shona word No Yes Yes Yes

Chikowore Valid - Shona word Yes Yes Yes Yes

nemadiploma Valid - Shona plus Borrowed Word Yes No Yes No

vanozomiswa Valid - Shona word Yes Yes Yes Yes

nekusanzwanana Valid - Shona word Yes Yes Yes Yes

ndokukasika Valid - Shona word Yes Yes Yes Yes

rekuviga Valid - Shona word Yes Yes Yes Yes

zvehutsikamutanda Valid - Shona word Yes Yes Yes Yes

vavakawana Valid - Shona word Yes Yes Yes Yes

havabhadharise Valid - Shona word Yes Yes Yes Yes

zvichazarurira Valid - Shona word Yes Yes Yes Yes

wangopfuura Valid - Shona word No Yes Yes Yes

mabar Valid - Shona word Yes Yes Yes Yes

kutevedza Valid - Shona word No Yes Yes Yes

vairumiswa Valid - Shona word Yes Yes Yes Yes

178 | P a g e

Shona 100k Words Correctness
OOV
Status

N-Gram Word
Flagged Correct

Word Actually
Correct

Mashoko Word
Flagged Correct

VanaHamadziripi Valid - Shona word Yes Yes Yes Yes

haibatsire Valid - Shona word Yes Yes Yes Yes

neveAFZ Valid - Shona plus Borrowed Word Yes No Yes Yes

wekutapurira Valid - Shona word Yes Yes Yes Yes

emberi Valid - Shona word No Yes Yes Yes

ndinoswera Valid - Shona word Yes Yes Yes Yes

Inherera Valid - Shona word Yes Yes Yes Yes

mare Valid - Shona word No Yes Yes Yes

Chihuri Valid - Shona word No Yes Yes Yes

nemahapa Valid - Shona word Yes Yes Yes Yes

Painetsana Valid - Shona word Yes Yes Yes Yes

namakereke Valid - Shona word Yes Yes Yes Yes

Notorious Valid - Borrowed Word Yes No Yes Yes

vanotoziva Valid - Shona word Yes Yes Yes Yes

tisarwe Valid - Shona word Yes Yes Yes Yes

agozouya Valid - Shona word No Yes Yes Yes

Rushiye Valid - Shona word No Yes Yes Yes

himself Valid - Borrowed Word Yes No Yes No

ndakazomushevedza Valid - Shona word Yes Yes Yes Yes

dzekumatendere Valid - Shona word Yes Yes Yes Yes

mandiro Valid - Shona word Yes Yes Yes Yes

Madhambu’ Incorrect - tokenisation error Yes No No No

kakazotanga Valid - Shona word Yes Yes Yes Yes

chakatakura Valid - Shona word No Yes Yes Yes

dzinotakurwa Valid - Shona word Yes Yes Yes Yes

andipewo Valid - Shona word Yes Yes Yes Yes

haurape Valid - Shona word Yes Yes Yes Yes

179 | P a g e

Shona 100k Words Correctness
OOV
Status

N-Gram Word
Flagged Correct

Word Actually
Correct

Mashoko Word
Flagged Correct

isagare Valid - Shona word Yes Yes Yes Yes

nekunyerekedza Valid - Shona word Yes Yes Yes Yes

Nyatanga Valid - Shona word Yes Yes Yes Yes

bara Valid - Shona word No Yes Yes Yes

uchibatsirikana Valid - Shona word Yes Yes Yes Yes

yaisabhadhara Valid - Shona word Yes Yes Yes Yes

nechiremerera Valid - Shona word No Yes Yes Yes

sekuba Valid - Shona word Yes Yes Yes Yes

zvakatongwa Valid - Shona word Yes Yes Yes Yes

taitombogara Valid - Shona word Yes Yes Yes Yes

chaunicho Valid - Shona word Yes Yes Yes Yes

wekurambwa Valid - Shona word Yes Yes Yes Yes

vanobatsirika Valid - Shona word Yes Yes Yes Yes

Muchakata Valid - Shona word No Yes Yes Yes

venhindiri Valid - Shona word Yes Yes Yes Yes

Anodzungaira Valid - Shona word Yes Yes Yes Yes

wamutsvata Valid - Shona word Yes Yes Yes Yes

Yoshifumi Valid - Shona word Yes Yes Yes Yes

kwekurudziro Valid - Shona word Yes Yes Yes Yes

neDembare Valid - Shona word Yes Yes Yes Yes

isvavirire Valid - Shona word Yes Yes Yes Yes

rakazokonzeresa Valid - Shona word Yes Yes Yes Yes

180 | P a g e

