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ABSTRACT: Cocombustion of bituminous coal (HC) and Pinus sawdust (PS) was investigated
in this paper with the aim of determining the kinetic parameters relevant to cocombustion
reactions of their fuel blends. PS was used because it is a waste biomass product capable of
generating energy. Motivated by the need to partly substitute HC used in existing boilers with PS,
the optimum kinetic parameters at different blending ratios were thus investigated with the
ultimate goal of diversifying the energy portfolio for these boilers. Blended samples were prepared
with a PS substitution by mass ranging from 0 to 30%, thus producing five samples,
namely:100HC, 90HC10PS, 80HC20PS, 70HC30PS, and 100PS. A simultaneous thermogravimetric analyzer was used to
investigate the degradation of the fuel samples under a synthetic air atmosphere using 5, 12.5, and 20 °C/min heating rates. The
kinetic parameters were evaluated using the distributed activation energy model (DAEM) due to its ability to evaluate complex
parallel chemical mechanisms. The influential homogenous volatile combustion and heterogenous combustion stages produced an
increasing trend for activation energy (Ea) with increased PS (100HC to 70HC30PS) from an average of 61.80−104.34 kJ/mol
while the pre-exponential factor increased from 1.31 × 105 to 6.52 × 108. Generally, blending of HC with PS did not produce a linear
variation of the kinetic parameters; thus, by using various plots, an optimum blending ratio of 80HC20PS was deduced.

1. INTRODUCTION
Cocombustion of coal and biomass provides an alternative for
biomass waste management as well as combustion efficiency
improvement for boilers if correctly implemented and
monitored during the combustion process.1 Optimization of
cocombustion is necessary since introduction of biomass does
not result in a linear variation of thermal parameters but is
dependent on a plethora of variables that range from fuel
physical and chemical properties to combustion operating
conditions.2,3 Unfortunately, coming up with optimized
parameters necessary for the cocombustion process on an
experimental basis is expensive and considered confidential by
most companies.4 As such computational fluid dynamics
(CFD) offers great potential in terms of addressing the gap
related to specific regions not capable of running experimental
facilities due to resource constraints. Deliberate policies by
developed countries on the use of biomass and coal in some of
their existing boilers has already produced some positive
feedback.5 However, since developing countries can now use
cost effective CFD, the major hurdle is on the initial boundary
conditions which are based on unique experimental data to
produce good cocombustion models. Due to the sheer vastness
of biomass species, a combination of appropriate modeling and
experimental techniques are needed to address the gap that
exists with respect to certain species that are employed in the
cocombustion process. Since combustion involves chemical
reactions, predicting good kinetic parameters forms the basis of
good mechanisms that can be used to predict the progression
of chemical reactions with improved accuracy.2

Combustion of solid fuels is based on the fact that a fuel
particle goes through distinct stages when it enters the
combustion zone, namely: drying, devolatilization, char
combustion, volatile combustion, and ash formation.6 Drying
entails the removal of moisture (surface and inherent) when
the particle is heated up to around 105 °C in the absence of
oxygen while devolatilization involves removal of light volatiles
and heavy volatiles when the heating continues further in the
absence of oxygen. The quantitative (mass of volatiles released
and the rate of release) and qualitative (chemical composition
of volatiles) analysis of volatiles is rather complicated making
this stage one of the most important ones in the combustion
experimental process. As for CFD, volatile combustion
submodels use mechanisms that are mainly based on the
results of the devolatilization stage.7 Char combustion requires
knowledge of the reactions that occur within the boundary
layer and those occurring within the free stream. Fortunately,
the experimental analysis of this stage is less cumbersome
when information about the fuel is adequate.6 However, CFD
requires specific input parameters which tend to be overlooked
by most of the researchers. Similarly, because of the vast
biomass species, it tends to be rather impossible to exhaust all
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the possible fuel blend compositions between coal and biomass
while testing various operating conditions.8 As a result, this
study is going to produce kinetic parameters for the chosen
fuel species that can be later extended to other compatible
useful species.

Investigations into cocombustion of coal and biomass have
been carried out before on an experimental basis as
summarized in Table 1. Guo et al.9 experiments showed a
decreasing trend on the overall activation energy (Ea) as the
biomass proportion was increased to about 30% which was also
supported by Chen et al.10 When the biomass proportion was
increased beyond 30%, its effect on Ea heavily became
dependent on the biomass species under study hence the
increasing trend at specific conversion percentages. This is
explained by the notion that different temperature ranges are
responsible for devolatilization, volatile combustion, and char
combustion for biomass vs coal samples. However, from a
general perspective, a higher Ea is representative of a lower
reactivity as more energy is required to initiate a reaction.10 To
avoid this confusion, Zhou et al.11 analyzed the Ea
representative of the volatile combustion regime separately
from the one representative of the char combustion regime.
Results showed an increase in Ea as biomass proportion
increased from 44.5 to 64.5 kJ/mol for the volatile combustion
regime while the Ea representative of the char combustion
regime decreased from 94.8 to 35.2 kJ/mol. Even though
Mureddu et al.12 did not investigate coal biomass blends, their
findings on individual coal and biomass species suggested
Pinus woodchips exhibit better combustion activity than coal.
This is evidenced by the Ea difference between bituminous coal
and Pinus woodchips corresponding to the volatile combustion
regime as well as the char combustion regime. An extensive
comparison of the different coal biomass blends for different
municipal solid wastes and woody biomass residues was
performed by Boumanchar et al.13 By using the Coats−
Redfern14 (C-R) method, the authors generally found the
diffusion and power (nucleation) mechanisms giving the best
fit between the model and experimental results. In contrast to
other researchers, Florentino-Madiedo et al.15 showed an
increased Ea for both the volatile combustion regime and the
char combustion regime, though the synergistic effect was not
particularly positive. As such, the complex nature of coal-
biomass cocombustion is made apparent by the absence of a

generalized trend toward the determination of Ea. Wang et al.16

performed experiments on coal blended with polyurethane and
demonstrated that ignition temperature is inversely propor-
tional to Ea. In as much as different models were employed by
the authors to analyze their results, the order of Ea for the coal
biomass blends was generally consistent obtaining values
between 10 and 200 kJ/mol for the different blending ratios.

Table 2 summarizes some of the industrial applications that
have tried to model the cocombustion process of biomass with
coal. Generally, the validation of the models (if done) is based
on temperature profiles within the furnace which are very
sensitive toward kinetic parameters. The general agreement
among the reviewed authors is for the need to perform good
physical and chemical characterization experiments if the
cocombustion models are to improve their accuracy. Most
common industrial boilers systems within Zimbabwe utilize
bituminous coal as a fuel as mirrored by other boiler systems
within the region as well. Eventually, the objective of this study
is to facilitate the cocombustion of coal and biomass waste
within these boilers. Since sawdust (mainly Pinus) is available
as a waste product across the region as well, the researchers
saw it worthwhile to select sawdust waste rather than compete
for wood. Appropriate disposal of sawdust waste offers a lot of
environmental positives.17,18 After extensive literature research,
the authors did not encounter any kinetic triplicate parameters
applicable to CFD modeling of Sub-Saharan bituminous coal
and Pinus sawdust (PS) blends for the devolatilization, volatile
combustion, and char combustion separately as required by
good CFD modeling software. This is particularly due to the
fact that, apart from lagging behind as a region, most authors
overlook how combustion occurs in stages. Though some of
the authors have managed to provide the overall kinetic
triplicate parameters for the whole combustion process,19 each
stage requires pertinent data to perform successful CFD
modeling.

This research will help address the gap that exists with
regards to Sub-Saharan coal and biomass cocombustion, thus
becoming useful technical data for power plant retrofitting and
optimization. To address these gaps, this research focused on
investigating the kinetic parameters that are used within the
cocombustion of bituminous coal and PS blends by
implementing the distributed activation energy model
(DAEM).10

Table 1. Examples of Coal and Biomass Cocombustion Analysis by Use of Thermogravimetry

experimental method kinetic method

fuel

biomass blending ratios
(% biomass
substitution)

max
temperature
(°C)

heating
rate
(°C/min)

sample
mass
(mg) purge gas

bituminous coal, lignite,
sawdust, rice straw, and
catkins9

10, 30, 50, 70 900 20 10 air, 80 mL/min Coats−Redfern

coal and corn stalks
biomass10

25, 50, 75 850 10, 20, 30,
40, 60

20 80% pure argon and 20%
pure nitrogen,
100 mL/min

distributed activation energy
model

bituminous coal, corn stalk,
and sawdust biomass11

10, 20, 30, 50 1000 15, 60 20 air, 100 mL/min Coats−Redfern

coal and cellulose biomass1 25, 50, 75 850 10, 20, 40 10 argon, 60 mL/min Kissinger−Akahira−Sunose
coal and wood chips12 various 1000 10, 20, 30,

40, 50
9 air, 100 mL/min Flynn−Wall−Ozawa and

Kissinger−Akahira−Sunose
coal, biochar, municipal solid

waste, and sawdust13
various 800 5 7 air, 100 mL/min Coats−Redfern

coal, torrefied sawdust,
paraffin15

various 1000 3, 10, 20,
40

10 nitrogen, 100 mL/min Friedman, Flynn−Wall−Ozawa,
and Kissinger−Akahira−
Sunose
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2. METHODOLOGY
2.1. Sample Preparation, Proximate, and Elementary

Analysis. The bituminous coal used in this research was of
thermal grade obtained from Hwange, Zimbabwe, a high
exploration region.20 The sawdust was obtained from local
sawmills around the Eastern Highlands which use Pinus taeda
and Pinus patula species as their main timber raw material.21

The ISO18283:2006 standard was used to prepare the coal and
PS samples for further analysis. Grinding of the fuel samples
was done using an IKA MF 10 cutting mill and a lab-scale
closed ball mill. The samples were then oven-dried at 105 °C
for 24 h before being placed on a vibrating shaker for the
sieving process. To ensure homogeneity, a particle diameter
group between 180 and 250 μm was chosen for subsequent
analysis.

The fuel blends were prepared on a mass basis and labeled
appropriately with HC representing the bituminous coal and
PS representing the Pinus sawdust. The notation that was
adopted for the sample labeling hence analysis was, for
example, “90HC10PS” representing 90% coal and 10% PS on a
mass basis. In total five samples were prepared for further
analysis which were: 100HC, 90HC10PS, 80HC20PS,
70HC30PS, and 100PS. A Barnstead Thermolyne 6000 muffle
furnace was used to carry out the proximate analysis of the fuel
samples. The ISO 562:2010 and ISO 1171:2010 standards
were followed throughout the proximate analysis, thus
obtaining the volatile matter, ash, and fixed carbon content.26

Approximately weights of 1 g were used for the proximate
analysis, and to ensure result validity, each fuel sample was
tested in triplicate. A Thermo Fisher Scientific Flash analyzer
(EA 1112) was used to perform the ultimate analysis (CHNS)
of the prepared samples using weights of approximately 1.8 mg
for each run. The oxygen and fixed carbon content were
determined using the difference method.
2.2. Combustion Kinetic Parameter Modeling. The

most common experimental method used in conjunction with
modeling techniques for combustion kinetic parameter
determination is based on finding the mass loss when the
sample is under a controlled heating environment. Specifically,
this method is referred to as thermogravimetric analysis which
requires an instrument capable of capturing the heating
temperature range, heating rate, heating atmosphere, and
sample mass with accuracy.27 Basically, the fuel sample
degrades within the instrument with α being used to denote
the degree of degradation as given by eq 1. M0 represents the
initial weight, Mt represents the sample weight at time t, and Mf
represents the final weight over the specific time range.

=
M M
M M

t

f

0

0 (1)

Thermal degradation being a kinetic process can then be
written based on the Arrhenius equation, eq 2, and the rate of
thermal degradation, eq 3, to produce a reaction mechanism
equation that can be analyzed using experimental data.
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where f(α) refers to the reaction mechanism model, k(T)
represents the reaction rate constant, A represents the pre-

exponential factor (s−1), Ea represents the activation energy
(kJ/mol), R represents the universal gas constant (J/mol·K), T
represents the temperature (K), and β refers to the heating rate
β = dT/dt (K/s).28,29

Several models have been developed that can be used to link
experimental data to combustion reaction mechanisms for
kinetic parameter determination. It is important to note that
the reaction mechanism model f(α) is unknown at the
beginning of any data analysis. Generally, these models used to
link experimental data to combustion reaction mechanisms are
thus classified as either model fitting methods or isoconver-
sional (model-free) methods.1 Table 3 summarizes the
different models commonly used to analyze experimental data.

Mathematical integration of eq 3 does not produce an exact
solution since integration of exp(−E/RT) is not exact because
of the variables involved. Thus, after rearranging, eq 3 can be
rewritten as eq 4. G(α) is used to represent the integrated form
of the reaction mechanism model f(α).
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Isoconversional methods are best used when determining
kinetic reaction parameters, particularly the Ea without
necessarily considering the reaction mechanism model f(α).
On the other hand, for model fitting models, eq 4 is integrated
to obtain eq 5, though rearranging is still necessary to obtain
eq 6.
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Fitting experimental data to eq 6 then becomes possible
especially after considering certain assumptions. One of these
assumptions is that combustion analysis acknowledges that (1
− 2RT/E) ≈ 1, thus producing a linear equation. As such the
experimental data is traced in such a way that y = ln[G(α)/T2]
is plotted against x = 1/T. From a mathematical point of view,
the plot of y vs x is supposed to be linear with a gradient of

Table 3. Model Fitting Methods and Isoconversional
Methods

method description

Coats−
Redfern13,14

model fitting requires previous knowledge of the reaction
mechanism

modified
Coats−
Redfern27,30

isoconversional: an integral method which depends on the
temperature integral approximation

Friedman15 isoconversional: a differential method that uses
determination of the reaction rate at an equivalent stage
for various heating rates

Flynn−Wall−
Ozawa15,31

isoconversional: an integral method which depends on the
temperature integral approximation

Vyazovkin27 isoconversional: solutions can only be obtained by use of
computer algorithms due to complexity and nonlinearity

Kissinger−
Akahira−
Sunose15,32

isoconversional: an integral method which depends on the
temperature integral approximation

distributed
activation
energy10

isoconversional: an integral method that acknowledges
chemical reactions occurring in parallel
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−E/R and a y-axis intercept of ln(AR/βE).16 The linear trace is
then analyzed to determine the reaction model function with
the least error.28,33 To determine the value of G(α), each
reaction model function has a characteristic equation as
presented in Table 4.

The method implemented within this study, the DAEM,10

which is a model-free method, is represented by eq 10. The
method is derived from the Kissinger−Akahira−Sunose15

model, which is an isoconversional model with the only
difference between the two being inclusion of the stabilizing
constant, 0.6075. The constant 0.6075 is obtained through
simplification of eq 9 based on the first order reaction model.
Naturally, it means other reaction models from Table 4 are
eligible to be employed, but research has proved how a balance
between accuracy and complexity is obtained by using the first
order reaction mechanism34
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The DAEM has been known to produce good results
especially with complex reactions such as biomass pyrolysis as
well as low temperature degradation.34 The strength of this
model is within its ability to acknowledge how parallel
reactions occur during the combustion process. Mathemati-
cally, plotting of ln (β/T2) against 1/T at a given degree of

degradation is supposed to give a linear graph.35,36The y-
intercept will then be employed to evaluate the pre-exponential
factor.

Within this research, goodness of fit was evaluated by
calculating the coefficient of determination, R2, which is a
statistical parameter. This is basically a ratio between the total
sum of squares of vertical deviations from each data point to
the fitted line and the total sum of squares about the mean as
given by eq 11.37 When the value of R2 was close to 1, it
indicated a good fit with regards to the reaction model function
chosen.
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2.3. Thermogravimetric Analysis. A Hitachi
STA7200RV simultaneous thermogravimetric analyzer was
employed as the instrument for the thermogravimetric
experimental analysis as represented in Figure 1.

Since the thermal degradation had to resemble combustion,
synthetic air was chosen as the purge gas with a constituent by
volume of 79% N2 and 21% O2. The purge gas flow rate was
set at 20 mL/min, which meant under the oxidative
environment, excess oxygen was being supplied to assure

Table 4. Reaction Model Functions for Combustion13,16

reaction model G(α)= f(α)=

reaction order models
zero order α 1
first order − ln (1 − α) 1−α

nth order (tested n = 2)
*

[ ]
n

1
1

(1 ) 1n( 1) (1−α)n

nucleation models
power law (n ≠ 1) (tested n = 1/2 and n = 2) α1/n nα(n−1)/n

Avrami−Erofeev (tested n = 1/2 and n = 2) [(−ln(1 − α)]1/n n(1 − α)[(−ln(1 − α)](n − 1)/n

geometrical contraction models
two dimensional (contracting area) 1 − (1 − α)1/2 2(1− α)1/2

three dimensional (contracting volume) 1 − (1 − α)1/3 3(1−α)2/3

diffusion models

1D diffusion α2 1
2

2D diffusion [(1 − α)(ln(1 − α)] + α [ − ln (1 − α)]−1

3D diffusion [ ]1 (1 )1/3 2 [ ]3
2

(1 ) 1 (1 )2/3 1/3 1

Figure 1. Thermogravimetric analyzer workbench schematic.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c03342
ACS Omega 2022, 7, 32108−32118

32112

https://pubs.acs.org/doi/10.1021/acsomega.2c03342?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03342?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03342?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03342?fig=fig1&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c03342?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


complete combustion. The ramp setting was chosen meaning
the heating rate could be entered such that the researchers
could investigate three heating rates of 5, 12.5, and 20 °C/min.
The dynamic temperature range of the instrument was set
between 25 and 915 °C meaning no isothermal conditions
were investigated. Samples of approximately 10 mg were
prepared and fed into an autosampler and a ceramic pan was
used for the experiments. The data logger was programmed to
record data after every 0.5 s producing the thermogravimetric
and differential thermal analysis data automatically. To assure
validity of results, some of the fuel samples were tested thrice
during the run of the experiments. Data analysis was carried
out using Origin Pro 2021 analytical software for better
visualization of raw and derived data for further analysis.

3. RESULTS AND DISCUSSION
3.1. Proximate and Ultimate Analysis. Proximate and

ultimate analysis results of the fuel samples are summarized in
Table 5. The trends relate quite well with previous studies
done by other authors showing higher volatile matter for
biomass.

The fixed carbon, which is generally higher for coal than
biomass, decreases as blending increases, which is the same
trend shared for ash. There is no linear variation between the
volatile content, ash, and fixed carbon with the blending ratio
for the whole range. Generally, substances with high volatile
content have a higher ignition tendency while those with high
fixed carbon have better combustion stability.38 Mishra and
Mohanty34 also highlighted how reduced ash content in the
fuel/blend results in better combustion properties and reduced
fuel preparation costs. Marangwanda et al.39 further supported
the notion by demonstrating how combustion stability
decreases as the biomass blending ratio increases due to the
increased volatile matter. As noted by Guo et al.,9 a higher
ignition tendency is associated with a lower Ea for the
prohomogenous volatile combustion zone, which means the
fuel/blend will require less energy to ignite (igniting at lower
temperatures).
3.2. Kinetic Parameter Analysis. 3.2.1. TG-DTG Curves

of Blended Samples. Using data obtained from the experi-
ments, TG-DTG curves were traced for the fuel samples under
test. The curves have been presented in detail in a previous
study by the same authors39 while a data file also accompanies
this publication with all the graphs employed by the authors.
The instrument had a sensitivity of 0.1 μg for TG mass
readings, which equated to a minimum uncertainty of 0.001%
and a maximum value of 0.036% for the values recorded
throughout the experiment. Also, since the values were
recorded continuously (in case there is some repeated error),
it became justifiable to overlook analysis of uncertainty
throughout analysis of TG results. An illustrative graph is

presented in Figure 2 on how the different points were
obtained within this research.

As noted by Zhou et al.,11 thermal degradation of coal makes
apparent four stages on the TG-DTG curves which are: low
temperature decomposition stage (closely related to inherent
moisture release through evaporation), oxygen adsorption
stage, homogeneous and heterogeneous combustion stage, and
burnout stage. The authors further highlighted that when
biomass is blended, the homogenous and heterogenous
combustion stage can be split into two distinct stages: the
prohomogeneous combustion stage and the proheterogeneous
combustion stage. However, they did not manage to determine
kinetic parameters for both stages explicitly which this research
addressed as well. Within this research, kinetic parameters
during the low temperature decomposition were not
determined (T < T1). This was supported by the fact that
few chemical reactions occurred during this initial stage thus
no significant mass loss was experienced.

Tinit represents the temperature at the start of the experiment
thus the release of moisture begins accompanied by a slight
decrease in mass. Subsequently, Stage 2 is noted by the region
with an almost constant or slight mass increase. This
corresponds to the physical and chemical adsorption of the
oxygen stage (region between T1 and Tig). As highlighted by
Wang et al.,16 the reason why the sample mass remains almost
constant or increases at first during Stage 2 is because after
oxygen adsorption, oxygen-containing complexes are formed
on the fuel particle surface. This process is also accompanied
by release of light volatiles (decrease in mass) thus a
contradicting phenomenon existing during Stage 2. If the
release of light volatiles is more significant than the mass gain
due to oxygen adsorption, an overall mass loss will be

Table 5. Chemical Properties of Coal, Pine Sawdust, and Fuel Blends

proximate analysisa (weight %) ultimate analysisa (weight %)

fixed carbonb volatile matter ash C H Ob N S

100HC 53.97 23.10 22.93 58.671 2.946 13.245 1.613 0.593
90HC 10PS 48.21 29.91 21.88 58.489 3.367 14.246 1.448 0.570
80HC 20PS 46.35 31.82 21.83 56.954 3.734 15.632 1.296 0.555
70HC 30PS 46.02 33.74 20.24 56.885 4.093 17.100 1.143 0.535
100PS 15.62 80.68 3.70 49.504 6.035 40.404 0.358 0

aOn a dry basis. bBy difference.

Figure 2. TG-DTG curve for 80HC20PS at a 12.5 °C/min heating
rate under an air atmosphere.
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experienced during Stage 2 thus a decrease of mass in Stage 2
for the 80HC20PS fuel blend.40

Of tremendous importance is the point at which ignition
occurs symbolized by the region where rapid mass loss
commences the TG curves. Within this research, ignition was
judged to occur when the mass loss rate was at 1% weight/min
as employed by some other authors in their corresponding
studies.27,32 The other method of locating the ignition point
which uses tracing of tangents on the TG-DTG curves is too
subjective especially when the effect of blending comes into
play since some points of inflection became intertwined. The
temperature at the ignition point is symbolized by Tig, while
the time by tig. The fuel continued to lose weight until the
burnout point when volatile and char combustion were judged
to have been completed. The burnout point is also denoted by
the point at which the mass loss rate is 1% weight/min after
the fuel has lost most of its mass. Tb is used to denote the
burnout temperature, while tb for the time at burnout.

The prohomogeneous volatile and proheterogeneous
combustion zones can be made apparent as distinct stages.
During the prohomogeneous volatile combustion zone, Stage
3, hydrocarbon active structures on the fuel surface increase
exponentially leading to an increased oxygen adsorption and
sample degradation rate. The products, tars, volatiles, CO, and
CO2 were then produced in large quantities leading to an
increased mass loss rate. Passing into the proheterogeneous
combustion zone, volatiles continue to burn while the fixed
carbon or char is ignited and combusted. As such, more CO
and CO2 gases are produced leading to an increased mass loss
rate.16 Tmax is used to show the temperature at which
maximum mass loss rate occurs visualized by a peak on the
DTG curve, tmax the time at that point and DTGmax the
corresponding mass loss rate. Stages 3 and 4 encompass the
most influential reactions related to combustion as most of the
mass loss occurs within these regions because of the
prohomogeneous and heterogenous combustion reactions.
For example, the 80HC20PS sample loses on average 74.6%
of its initial weight within this stage. Eventually, as alluded to in
the introductory section, the kinetic parameters for each stage
were determined exclusively without averaging the parameters
for the whole process.40,41

3.2.2. Kinetic Analysis by the DAEM. The DAEM method
was first used to determine the Ea for the different stages in the
combustion process. For a given degree of degradation (α),
ln(β/T2) was traced against 1/T to give a linear plot. Using a
viable approach proposed by Wang et al.,32 more emphasis was
placed on Stages 3 and 4 with regards to this method. The
chosen degrees of degradation of 0.1 up to 0.9 where all within
the prohomogeneous and proheterogeneous combustion stage.
For example, at a heating rate of 20 °C/min, the
prohomogeneous volatile combustion stage began at a degree
of degradation of 0.04249 for the 70HC30PS sample, 0.03458
for the 80HC20PS sample, and 0.02843 for the 90HC10PS
sample. The proheterogeneous char combustion stage
terminated at a degree of degradation of 0.9785 for the
70HC30PS sample, 0.9798 for the 80HC20PS sample, and
0.9821 for the 90HC10PS sample. These lower and upper
limits where almost similar for the other heating rates of 12.5
and 5 °C/min. The prohomogeneous combustion stage for the
various heating rates had an average degree of degradation
upper limit of 0.1877 which led the authors to suggest that the
Ea values obtained at degrees of degradation of 0.1 and 0.2
where related to the prohomogeneous combustion stage. The

rest of the values where then linked to the proheterogeneous
combustion stage.

The values represented in Table 6 were obtained from the
plot of ln(β/T2) against 1/T for the samples at 5, 12.5, and 20
°C/min heating rates as shown in Figures 3456. Eq 12 shows
the rearranged form that was used to determine the Ea values,
while eq 13 shows the corresponding equation used for the
pre-exponential factor.

= × [ ]E (kJ/mol) gradient 8.314 (J/mol K)/1000a
(12)

=
·

×A
E

R
y

(J/mol)
(J/mol K)

exp( intercept 0.6075)
(13)

The average Ea values for both Stages 3 and 4 were then
consolidated as shown in Table 7 for all the fuel samples based
on the ln(β/T2) against 1/T plots.

Figure 7 does show that Stage 3 (provolatile combustion)
tends to require more energy to activate with regards to blends
containing high content of coal. However, the difference
between the energy required to activate Stage 3 vs Stage 4
tends to decrease as the blending ratio increases. One possible
explanation might be due to the higher energy required to
activate the degradation of hemicellulose and cellulose within
biomass as postulated by Wnorowska et al.38 The other
explanation might be due to the effect of diffusion within the
boundary layer as rightly explained by Sarroza et al.42 Diffusion
of oxygen toward the char particle is hindered by a volatile
cloud formed during devolatilization. Consequently, the Ea
required to combust a char particle becomes higher whenever
high volatile substances are involved. However, it is very
important to understand that in a volatile free environment,
biomass char is considered more reactive than coal char as
investigated by Al-Qayim et al.43 In agreement, the authors
recorded an increase of 43.9% from 72.94 to 104.95 kJ/mol
(averaged Stages 3 and 4) in Ea as more PS was introduced.

Figure 8 does demonstrate how Ea varies with degree of
conversion for the different fuel samples. Both 100HC and
90HC10PS samples show a clear progression of decreasing Ea
as a function of degree of conversion. The 80HC20PS sample
then shows a quasi-activation energy between α = 0.1 and 0.3,
which is then exaggerated by the 70HC30PS sample at α = 0.2
with a drop in Ea before increasing and later dropping gradually
after α = 0.4. Analysis of Figure 2 alongside Figure 8 highlights
how the region between α = 0.1 and 0.3 falls within the
prohomogeneous combustion zone for the 80HC20PS and
70HC30PS samples. As such it makes sense to note that the
type of volatiles released from biomass influence combustion
progression heavily for any blending greater than the
80HC20PS mass ratio. This can also be seen by the plot in
Figure 9, which is generally expected to have a linear gradient
to demonstrate a kinetic compensation effect as discussed by
Chen et al.10 Kinetic compensation is generally expected for
most heterogenous-based chemical reactions as experienced
within this research.44 As such a compromise between
blending ratios and benefits can be obtained from the
80HC20PS sample. Figure 10 compares the behavior of
previous studies with the current one with respect to Ea and
conversion degree for coal samples. Mureddu et al.12 during
their experiments with bituminous South African coal, which
has properties very close to the bituminous coal under test,
obtained slightly lower Ea. The average Ea of South African coal
was 59.47 kJ/mol while that of the coal under test was 61.80
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Figure 3. Plot of ln[β/T2] vs 1/T for 70HC30PS at 5, 12.5, and 20
°C/min under an air atmosphere.

Figure 4. Plot of ln[β/T2] vs 1/T for 80HC20PS at 5, 12.5, and 20
°C/min under an air atmosphere.

Figure 5. Plot of ln[β/T2] vs 1/T for 90HC10PS at 5, 12.5, and 20
°C/min under an air atmosphere.

Figure 6. Plot of ln[β/T2] vs 1/T for 100HC at 5, 12.5, and 20 °C/
min under an air atmosphere.
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kJ/mol. The slight difference might be due to the heating rates
employed by Mureddu et al.12 (10, 20, 30, 40, and 50 °C/min
heating rates) as well as the modeling method used, Kissinger−
Akahira−Sunose (KAS). However, as supported by other
authors that used the KAS method with respect to coal, the Ea

associated with Stages 3 and 4 is around 80−150 kJ/mol while
that associated with biomass is around 60−193 kJ/mol.31,35,36

Wang et al.27 also demonstrated how coal containing blends
have an Ea between 85 and 143 kJ/mol with regards to the
combined Stages 3 and 4.

4. CONCLUSIONS
Through experimental work coupled with modeling techni-
ques, the kinetic parameters of HC and PS blends were
determined with success. The research gap existent due to the
need of having correct combustion parameters necessary for
optimum operation of most boilers that are moving toward
greener energy was addressed within this research. Exper-
imental work was necessary so as to generate boundary
conditions that can be used for further optimization of
combustion boilers. This was mainly because no linear relation
could be deduced that could link sample blending proportions
to expected kinetic parameters. In conclusion:

The higher volatile composition within PS was responsible
for a decrease in ignition temperature from 457.70 to 265.76
°C as the mass proportion was increased from 0 to 30% for a
heating rate of 20 °C/min. The biochar obtained from PS was
deduced to have catalyzed the decrease in burnout temperature
as well by 14.64% from 820.05 to 699.97 °C. The DTG curve
developed two peaks as soon as PS was blended with the first
peak being linked to homogenous volatile combustion while
the second peak was linked to heterogenous char combustion.

The kinetic parameters that were evaluated using the DAEM
produced no linear trends as the PS proportion was increased
from 0 to 30%. The influential homogenous volatile
combustion produced an increasing trend for activation energy
(Ea) with an increased PS mass ratio (100HCto 70HC30PS)
from 92.98 to 106.05 kJ/mol. The heterogeneous combustion
stage also produced an increasing trend from 52.90 to 103.85
kJ/mol. Similarly, the pre-exponential factor increased with
blending for both homogenous and heterogenous combustion
from 5.84 × 105 to 2.72 × 109 s−1 and 1.16 × 103 to 6.12 × 107

s−1, respectively.
Good kinetic compensation is obtained for the 100HC and

90HC10PS samples guiding the authors to suggest an
optimum blending ratio of 80HC20PS when all the
appropriate parameters are taken into account. This blending
ratio guaranteed a large change in Ea which symbolized
maximum influence of PS at reduced blending ratios. This is
particularly important for cofiring facilities that do not need to
change most of their operating conditions when they cater for
biomass substitution.

Table 7. DAEM Activation Energy and Pre-Exponential
Factor Values for the Fuel Blends Heated in Air

fuel blend stage E (kJ/mol) A (s−1)

100HC Stage 3 92.98 5.84 × 105

Stage 4 52.90 1.16 × 103

90HC10PS Stage 3 107.89 5.05 × 106

Stage 4 68.99 2.78 × 104

80HC20PS Stage 3 104.95 2.94 × 108

Stage 4 90.52 9.53 × 105

70HC30PS Stage 3 106.05 2.718 × 109

Stage 4 103.85 6.118 × 107

Figure 7. Plot of Ea vs blending ratio.

Figure 8. Plot of Ea vs degree of conversion.

Figure 9. Plot of ln(A) vs activation energy.

Figure 10. Plot of activation energy comparison vs degree of
conversion of Hwange coal and South African coal.
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In summary, the necessary boundary conditions related to
cocombustion of HC and PS blends were evaluated at different
blending ratios resulting in parameters for each combustion
stage, namely, devolatilization, volatile combustion, and char
combustion.
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■ NOMENCLATURE

Units
Ea activation energy (kJ/mol)
T static temperature (K)
m mass (g)
Qv volume flow rate (mL/min)
k(T) reaction rate constant
A pre-exponential factor (s−1)
t time (s)
R universal gas constant (J/mol·K)
C synergistic effect coefficient
R2 coefficient of confidence
Abbreviations
HC bituminous coal
PS Pinus sawdust
TGA thermogravimetric analysis
CR Coats−Redfern
KAS Kissinger-Akahira−Sunose
CFD computational fluid dynamics
FG-DVC functional group depolymerization volatile cross-

linking
EDM Eddy dissipation model
RNG renormalization group
WSGGM weighted sum of gray gases model
RSM Reynolds stress model
DTG TG first derivative
DSC differential scanning calorimetry curve
Subscripts
0 or in initial weight
t weight at time t
max maximum
i species
exp experimental
f or fin final weight
ig ignition
Greek Symbols
k turbulence kinetic energy (m2 s−2)
α degree of degradation
β heating rate (K/s)
ε dissipation rate of k (m2 s−3)
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